Full Text:   <3067>

CLC number: S625.5+1

On-line Access: 

Received: 2004-02-02

Revision Accepted: 2004-06-17

Crosschecked: 0000-00-00

Cited: 1

Clicked: 6809

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
1. Reference List
Open peer comments

Journal of Zhejiang University SCIENCE A 2005 Vol.6 No.4 P.265-269

http://doi.org/10.1631/jzus.2005.A0265


Determining heating pipe temperature in greenhouse using proportional integral plus feedforward control and radial basic function neural-networks


Author(s):  YU Chao-gang, YING Yi-bin, WANG Jian-ping, NOURAIN Jamal, YANG Jia

Affiliation(s):  Institude of Modern Agricultural Equipment and Automation, Zhejiang University, Hangzhou 310029, China; more

Corresponding email(s):   ybying@zju.edu.cn

Key Words:  PI control, Greenhouse, Temperature, Neural networks


YU Chao-gang, YING Yi-bin, WANG Jian-ping, NOURAIN Jamal, YANG Jia. Determining heating pipe temperature in greenhouse using proportional integral plus feedforward control and radial basic function neural-networks[J]. Journal of Zhejiang University Science A, 2005, 6(4): 265-269.

@article{title="Determining heating pipe temperature in greenhouse using proportional integral plus feedforward control and radial basic function neural-networks",
author="YU Chao-gang, YING Yi-bin, WANG Jian-ping, NOURAIN Jamal, YANG Jia",
journal="Journal of Zhejiang University Science A",
volume="6",
number="4",
pages="265-269",
year="2005",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.2005.A0265"
}

%0 Journal Article
%T Determining heating pipe temperature in greenhouse using proportional integral plus feedforward control and radial basic function neural-networks
%A YU Chao-gang
%A YING Yi-bin
%A WANG Jian-ping
%A NOURAIN Jamal
%A YANG Jia
%J Journal of Zhejiang University SCIENCE A
%V 6
%N 4
%P 265-269
%@ 1673-565X
%D 2005
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.2005.A0265

TY - JOUR
T1 - Determining heating pipe temperature in greenhouse using proportional integral plus feedforward control and radial basic function neural-networks
A1 - YU Chao-gang
A1 - YING Yi-bin
A1 - WANG Jian-ping
A1 - NOURAIN Jamal
A1 - YANG Jia
J0 - Journal of Zhejiang University Science A
VL - 6
IS - 4
SP - 265
EP - 269
%@ 1673-565X
Y1 - 2005
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.2005.A0265


Abstract: 
Proportional integral plus feedforward (PI+FF) control was proposed for identifying the pipe temperature in hot water heating greenhouse. To get satisfying control result, ten coefficients must be adjusted properly. The data for training and testing the radial basic function (RBF) neural-networks model of greenhouse were collected in a 1028 m2 multi-span glasshouse. Based on this model, a method of coefficients adjustment is described in this article.

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1] Cai, X.Y., 2000. The Modern Vegetable Greenhouse Establishment and Management. Shanghai Science Technology Press, Shanghai (in Chinese).

[2] Chalabi, Z.S., Bailey, B.J., Wilkinson, D.J., 1996. A real-time optimal control algorithm for greenhouse heating. Computer and Electronics in Agriculture, 15:1-13.

[3] Chen, S., Cowan, C.F.N., Grant, P.M., 1991. Orthogonal least squares learning algorithm for radial basis function networks. IEEE Trans on Neural Networks, 2(2):302-309.

[4] Chen, S., Grant, P.M., Cowan, C.F.N., 1992. Orthogonal least-squares algorithm for training multioutput radial basis function networks. IEE Proceedings-F, 139(6):378-384.

[5] Davis, P.F., Hooper, A.W., 1991. Improve of greenhouse heating control. IEE Proceedings, 138(3):249-255.

[6] Frausto, H., Pieters, J., 2004. Modeling greenhouse temperature using system identification by means of neural networks. Neurocomputing, 56:243-248.

[7] Ferreira, P.M., Faria, E.A., Ruano, A.E., 2002. Neural network model in greenhouse air temperature prediction. Neurocomputing, 43:51-75.

[8] Linker, R., Seginer, I., 2004. Greenhouse temperature modeling: a comparison between sigmoid neural networks and hybrid models. Mathematics and Computers in Simulation, 65:19-29.

[9] Moody, J.E., Darken, C.I., 1988. Fast learning in networks of locally-tuned processing units. Neural Computation, 1:282-294.

[10] Seginer, I., 1997. Some artificial neural network application to greenhouse environmental control. Computer and Electronics in Agriculture, 18:167-186.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE