Full Text:   <1981>

Summary:  <1415>

CLC number: TP242

On-line Access: 2017-04-12

Received: 2015-11-16

Revision Accepted: 2016-02-17

Crosschecked: 2017-03-14

Cited: 0

Clicked: 6804

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Can-jun Yang

http://orcid.org/0000-0002-3712-0538

-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering  2017 Vol.18 No.4 P.485-497

http://doi.org/10.1631/FITEE.1500399


A space-saving steering method for underwater gliders in lake monitoring


Author(s):  Yu-shi Zhu, Can-jun Yang, Shi-jun Wu, Qing Li, Xiao-le Xu

Affiliation(s):  The State Key Laboratory of Fluid Power & Mechatronic Systems, Zhejiang University, Hangzhou 310027, China

Corresponding email(s):   ycj@zju.edu.cn

Key Words:  Underwater glider, Lake monitoring, Space-saving, Steering method, Small pitch angle (SPA), Hydrodynamics


Yu-shi Zhu, Can-jun Yang, Shi-jun Wu, Qing Li, Xiao-le Xu. A space-saving steering method for underwater gliders in lake monitoring[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(4): 485-497.

@article{title="A space-saving steering method for underwater gliders in lake monitoring",
author="Yu-shi Zhu, Can-jun Yang, Shi-jun Wu, Qing Li, Xiao-le Xu",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="18",
number="4",
pages="485-497",
year="2017",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.1500399"
}

%0 Journal Article
%T A space-saving steering method for underwater gliders in lake monitoring
%A Yu-shi Zhu
%A Can-jun Yang
%A Shi-jun Wu
%A Qing Li
%A Xiao-le Xu
%J Frontiers of Information Technology & Electronic Engineering
%V 18
%N 4
%P 485-497
%@ 2095-9184
%D 2017
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.1500399

TY - JOUR
T1 - A space-saving steering method for underwater gliders in lake monitoring
A1 - Yu-shi Zhu
A1 - Can-jun Yang
A1 - Shi-jun Wu
A1 - Qing Li
A1 - Xiao-le Xu
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 18
IS - 4
SP - 485
EP - 497
%@ 2095-9184
Y1 - 2017
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.1500399


Abstract: 
An increasing number of underwater gliders have been applied to lake monitoring. Lakes have a limited vertical space. Therefore, good space-saving capacity is required for underwater gliders to enlarge the spacing between monitoring waypoints. This paper presents a space-saving steering method under a small pitch angle (SPA) for appearance-fixed underwater gliders. Steering under an SPA increases the steering angle in per unit vertical space. An amended hydrodynamic model for both small and large attack angles is presented to help analyze the steering process. Analysis is conducted to find the optimal parameters of net buoyancy and roll angle for steering under an SPA. A lake trial with a prototype tiny underwater glider (TUG) is conducted to inspect the applicability of the presented model. The trial results show that steering under an SPA saves vertical space, unlike that under a large pitch angle. Simulation results of steering are consistent with the trial results. In addition, multiple-waypoint trial shows that monitoring with steering under an SPA covers a larger horizontal displacement than that without steering.

In this paper the authors proposed a small pitch angle (SPA)-based approach to the steering (namely turning) of underwater gliders in shallow water environments, with the goal of maximizing steering per unit vertical descent, so that more descent can be used for horizontal travel towards the target point. A dynamic model, including the hydrodynamic model, was presented. Simulation results and experimental results were provided to show the performance the proposed method. The presented simulation and experimental results seem to be promising in supporting the proposed approach. Overall, this work is of high quality.

适用于湖水监测的水下滑翔机的空间高效转向方法

概要:越来越多的水下滑翔机正在被应用到湖水监测中。由于湖水具有有限的竖直空间,为了让水下滑翔机能够扩大不同监测点的间距,水下滑翔机应具有空间高效的转向能力。本文提出一种使用小俯仰角的转向方法,以便让外形固定的水下滑翔机能够具有空间高效的转向能力。使用小俯仰角转向可以提高水下滑翔机在单位竖直空间下的转向角度。本文提出了一种同时适用于大小攻角的水下滑翔机水动力模型,对小俯仰角转向过程中最优的净浮力与横滚角度展开了研究。为了验证水动力模型和转向方法的适用性,研制了小型水下滑翔机原型机并进行了湖水试验。试验表明,水下滑翔机使用小俯仰角进行转向比使用大俯仰角转向更能节省竖直方向消耗的空间。仿真结果与湖水试验结果一致。另外,多监测点连续监测试验表明,与比不使用小俯仰角转向相比,水下滑翔机使用小俯仰角进行转向能够覆盖更大的监测区域。

关键词:水下滑翔机;湖水监测;空间高效;转向方法;小俯仰角;水动力

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Ahmadzadeh, S.R., Kormushev, P., Caldwell, D.G., 2014. Multi-objective reinforcement learning for AUV thruster failure recovery. IEEE Symp. on Adaptive Dynamic Programming and Reinforcement Learning, p.1-8.

[2]Austin, J., 2013a. Observations of near-inertial energy in Lake Superior. Limnol. Ocean., 58(2):715-728.

[3]Austin, J., 2013b. The potential for autonomous underwater gliders in large lake research. J. Great Lake Res., 39(Supplement 1):8-13.

[4]Bardyshev, V.I., 2004. Testing underwater bottom-moored antenna arrays in the sea and in a man-made lake. Acoust. Phys., 50(6):641-646.

[5]Caffaz, A., Caiti, A., Casalino, G., et al., 2010. The hybrid glider/AUV folaga. IEEE Robot. Autom. Mag., 17(1): 31-44.

[6]Cao, J.J., Cao, J.L., Yao, B.H., et al., 2015. Three dimensional model, hydrodynamics analysis and motion simulation of an underwater glider. OCEANS, p.1-8.

[7]Chen, Y., Lu, C.J., Guo, J.H., 2010. Numerical study of the cavitating flows over underwater vehicle with large angle of attack. J. Hydrodyn., 22(5):893-898.

[8]Denkenberger, J.S., Driscoll, C.T., Effler, S.W., et al., 2007. Comparison of an urban lake targeted for rehabilitation and a reference lake based on robotic monitoring. Lake Reserv. Manag., 23(1):11-26.

[9]Fan, S., Woolsey, C.A., 2014. Dynamics of underwater gliders in currents. Ocean Eng., 84:249-258.

[10]Geisbert, J.S., 2005. Underwater Gliders: Dynamics, Control and Design. PhD Thesis, Princeton University, Princeton, USA.

[11]Geisbert, J.S., 2007. Hydrodynamic modeling for Autonomous Underwater Vehicles Using Computational and Semi-Empirical Methods. MS Thesis, Virginia Polytechnic Institute and State University, Blacksburg, USA.

[12]He, R., Wooller, M.J., Pohlman, J.W., et al., 2012. Diversity of active aerobic methanotrophs along depth profiles of Arctic and Subarctic lake water column and sediments. ISME J., 6(10):1937-1948.

[13]Hussain, N.A.A., Arshad, M.R., Mohd-Mokhtar, R., 2011. Underwater glider modelling and analysis for net buoyancy, depth and pitch angle control. Ocean Eng., 38(16): 1782-1791.

[14]Isa, K., Arshad, M.R., 2011. Motion simulation for propeller-driven USM underwater glider with controllable wings and rudder. 2nd Int. Conf. on Instrumentation Control and Automation, p.316-321.

[15]Isa, K., Arshad, M.R., Ishak, S., 2014. A hybrid-driven underwater glider model, hydrodynamics estimation, and an analysis of the motion control. Ocean Eng., 81:111-129.

[16]Ivanov, A.V., Gladkochub, D.P., Déverchère, J., et al., 2013. Introduction to special issue: geology of the Lake Baikal region. J. Asian Earth Sci., 62:1-3.

[17]Jones, C., Allsup, B., DeCollibus, C., 2014. Slocum glider: expanding our understanding of the oceans. OCEANS, p.1-10.

[18]Leonard, N.E., Paley, D.A., Davis, R.E., et al., 2010. Coordinated control of an underwater glider fleet in an adaptive ocean sampling field experiment in Monterey Bay. J. Field Rob., 27(6):718-740.

[19]Li, Y., Gal, G., Makler-Pick, V., et al., 2014. Examination of the role of the microbial loop in regulating lake nutrient stoichiometry and phytoplankton dynamics. Biogeosciences, 11(11):2939-2960.

[20]Lim, D.S.S., Brady, A.L., Abercromby, A.F., et al., 2011. A historical overview of the pavilion lake research project—analog science and exploration in an underwater environment. GSA Spec. Papers, 483:85-116.

[21]Mahmoudian, N., Geisbert, J., Woolsey, C., 2010. Approximate analytical turning conditions for underwater gliders: implications for motion control and path planning. IEEE J. Ocean. Eng., 35(1):131-143.

[22]Peng, S.L., Yang, C.J., Fan, S.S., et al., 2014. Hybrid underwater glider for underwater docking: modeling and performance evaluation. Mar. Technol. Soc. J., 48(6): 112-124.

[23]Suberg, L., Wynn, R.B., van der Kooij, J., et al., 2014. Assessing the potential of autonomous submarine gliders for ecosystem monitoring across multiple trophic levels (plankton to cetaceans) and pollutants in shallow shelf seas. J. Meth. Ocean., 10:70-89.

[24]Wang, C.T., Yu, J.C., Wu, L.H., et al., 2007. Research on movement mechanism simulation and experiment of underwater glider. Ocean Eng., 25(1):64-69.

[25]Wang, L.F., Yang, L.Y., Kong, L.H., et al., 2014. Spatial distribution, source identification and pollution assessment of metal content in the surface sediments of Nansi Lake, China. J. Geochem. Exp., 140:87-95.

[26]Wang, Y.H., Zhang, H.W., Wang, S.X., 2009. Trajectory control strategies for the underwater glider. Int. Conf. on Measuring Technology and Mechatronics Automation, p.918-921.

[27]Weng, Y., Yang, H., He, J.Y., et al., 2015. Microstructure measurement form an underwater glider: motion analysis and experimental results. OCEANS, p.1-5.

[28]Yang, C.J., Peng, S.L., Fan, S.S., 2014. Performance and stability analysis for ZJU glider. Mar. Technol. Soc. J., 48(3):88-103.

[29]Zhang, F.T., Zhang, F.M., Tan, X.B., 2014. Tail-enabled spiraling maneuver for gliding robotic fish. J. Dynam. Syst. Meas. Contr., 136(4):041028.

[30]Zhang, S.W., Yu, J.C., Zhang, A.Q., et al., 2013. Spiraling motion of underwater gliders: modeling, analysis, and experimental results. Ocean Eng., 60:1-13.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2022 Journal of Zhejiang University-SCIENCE