CLC number: TP391.7
On-line Access: 2018-01-11
Received: 2016-05-04
Revision Accepted: 2016-09-27
Crosschecked: 2017-11-08
Cited: 0
Clicked: 7013
Tao Li, Jun Wang, Hao Liu, Li-gang Liu. Efficient mesh denoising via robust normal filtering and alternate vertex updating[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(11): 1828-1842.
@article{title="Efficient mesh denoising via robust normal filtering and alternate vertex updating",
author="Tao Li, Jun Wang, Hao Liu, Li-gang Liu",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="18",
number="11",
pages="1828-1842",
year="2017",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.1601229"
}
%0 Journal Article
%T Efficient mesh denoising via robust normal filtering and alternate vertex updating
%A Tao Li
%A Jun Wang
%A Hao Liu
%A Li-gang Liu
%J Frontiers of Information Technology & Electronic Engineering
%V 18
%N 11
%P 1828-1842
%@ 2095-9184
%D 2017
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.1601229
TY - JOUR
T1 - Efficient mesh denoising via robust normal filtering and alternate vertex updating
A1 - Tao Li
A1 - Jun Wang
A1 - Hao Liu
A1 - Li-gang Liu
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 18
IS - 11
SP - 1828
EP - 1842
%@ 2095-9184
Y1 - 2017
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.1601229
Abstract: The most challenging problem in mesh denoising is to distinguish features from noise. Based on the robust guided normal estimation and alternate vertex updating strategy, we investigate a new feature-preserving mesh denoising method. To accurately capture local structures around features, we propose a corner-aware neighborhood (CAN) scheme. By combining both overall normal distribution of all faces in a CAN and individual normal influence of the interested face, we give a new consistency measuring method, which greatly improves the reliability of the estimated guided normals. As the noise level lowers, we take as guidance the previous filtered normals, which coincides with the emerging rolling guidance idea. In the vertex updating process, we classify vertices according to filtered normals at each iteration and reposition vertices of distinct types alternately with individual regularization constraints. Experiments on a variety of synthetic and real data indicate that our method adapts to various noise, both Gaussian and impulsive, no matter in the normal direction or in a random direction, with few triangles flipped.
[1]Belyaev, A., Ohtake, Y., 2003. A comparison of mesh smoothing methods. Proc. Israel-Korea Bi-National Conf. on Geometric Modeling and Computer Graphics, p.83-87.
[2]Bian, Z., Tong, R.F., 2011. Feature-preserving mesh denoising based on vertices classification. Comput. Aided Geom. Des., 28(1):50-64.
[3]Chen, C.Y., Cheng, K.Y., 2005. A sharpness dependent filter for mesh smoothing. Comput. Aided Geom. Des., 22(5):376-391.
[4]Cho, H., Lee, H., Kang, H., et al., 2014. Bilateral texture filtering. ACM Trans. Graph., 33(4):128.1-128.8.
[5]Desbrun, M., Meyer, M., Schröder, P., et al., 1999. Implicit fairing of irregular meshes using diffusion and curvature flow. Proc. 26th Annual Conf. on Computer Graphics and Interactive Techniques, p.317-324.
[6]Fan, H.Q., Yu, Y.Z., Peng, Q.S., 2010. Robust feature-preserving mesh denoising based on consistent linebreak subneighborhoods. IEEE Trans. Vis. Comput. Graph., 16(2):312-324.
[7]Fleishman, S., Drori, I., Cochen-Or, D., 2003. Bilateral mesh denoising. ACM Trans. Graph., 22(3):950-953.
[8]He, L., Schaefer, S., 2013. Mesh denoising via l0 minimization. ACM Trans. Graph., 32(4):64.1-64.8.
[9]Jones, T.R., Durand, F., Desbrun, M., 2003. Non-iterative, feature-preserving mesh smoothing. ACM Trans. Graph., 22(3):943-949.
[10]Liu, L.G., Tai, C.L., Ji, Z.P., et al., 2007. Non-iterative approach for global mesh optimization. Comput. Aided Des., 39(9):772-782.
[11]Lu, X.Q., Deng, Z.G., Chen, W.Z., 2016. A robust scheme for feature-preserving mesh denoising. IEEE Trans. Vis. Comput. Graph., 22(3):1181-1194.
[12]Ohtake, Y., Belyaev, A., Bogaevski, I., 2001. Mesh regularization and adaptive smoothing. Comput. Aided Des., 33(11):789-800.
[13]Ohtake, Y., Belyaev, A., Yagou, H., 2002. Mesh smoothing via mean and median filtering applied to face normals. Proc. Geometric Modeling and Processing Conf., p.124-131.
[14]Shen, J., Maxim, B., Akingbehin, K., 2005. Accurate correction of surface noises of polygonal meshes. Int. J. Numer. Meth. Eng., 64(12):1678-1698.
[15]Solomon, J., Crane, K., Butscher, A., et al., 2014. A general framework for bilateral and mean shift filtering. arXiv:1405.4734.
[16]Sun, X.F., Rosin, P., Martin, R., et al., 2007. Fast and effective feature-preserving mesh denoising. IEEE Trans. Vis. Comput. Graph., 13(5):925-938.
[17]Sun, X.F., Rosin, P., Martin, R., et al., 2008. Random walks for feature-preserving mesh denoising. Comput. Aided Geom. Des., 25(7):437-456.
[18]Taubin, G., 1995. A signal processing approach to fair surface design. Proc. 22nd Annual Conf. on Computer Graphics and Interactive Techniques, p.351-358.
[19]Taubin, G., 2001. Linear Anisotropic Mesh Filtering. United States Patent Application 20040075659, USA.
[20]Wang, J., Zhang, X., Yu, Z.Y., 2012. A cascaded approach for feature-preserving surface mesh denoising. Comput. Aided Des., 44(7):597-610.
[21]Wang, P.S., Fu, X.M., Liu, Y., et al., 2015. Rolling guidance normal filter for geometric processing. ACM Trans. Graph., 34(6):17.1-17.9.
[22]Wang, R.M., Yang, Z.W., Liu, L.G., et al., 2014. Decoupling noise and features via weighted l1 analysis compressed sensing. ACM Trans. Graph., 33(2):18.1-18.12.
[23]Wei, M.Q., Shen, W.Y., Qin, J., et al., 2013. Feature-preserving optimization for noisy mesh using joint bilateral filter and constrained Laplacian smoothing. Opt. Laser Eng., 51(11):1223-1234.
[24]Wei, M.Q., Yu, J.Z., Pang, W.M., et al., 2015. Bi-normal filtering for mesh denoising. IEEE Trans. Vis. Comput. Graph., 21(1):43-55.
[25]Yagou, H., Ohtake, Y., Belyaev, A., 2003. Mesh denoising via iterative alpha-trimming and nonlinear diffusion of normals with automatic thresholding. Proc. Computer Graphics Int., p.28-34.
[26]Zhang, H.Y., Wu, C.L., Zhang, J.Y., et al., 2015. Variational mesh denoising using total variation and piecewise constant function space. IEEE Trans. Vis. Comput. Graph., 21(7):873-886.
[27]Zhang, W.Y., Deng, B.L., Zhang, J.Y., et al., 2015. Guided mesh normal filtering. Comput. Graph. Forum, 34(7): 23-34.
[28]Zheng, Y.Y., Fu, H.B., Au, O.K.C., et al., 2011. Bilateral normal filtering for mesh denoising. IEEE Trans. Vis. Comput. Graph., 17(10):1521-1530.
Open peer comments: Debate/Discuss/Question/Opinion
<1>