Full Text:   <2591>

Summary:  <1685>

CLC number: TP391.7

On-line Access: 2018-01-11

Received: 2016-05-04

Revision Accepted: 2016-09-27

Crosschecked: 2017-11-08

Cited: 0

Clicked: 7013

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Tao Li

http://orcid.org/0000-0002-7247-6126

-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering  2017 Vol.18 No.11 P.1828-1842

http://doi.org/10.1631/FITEE.1601229


Efficient mesh denoising via robust normal filtering and alternate vertex updating


Author(s):  Tao Li, Jun Wang, Hao Liu, Li-gang Liu

Affiliation(s):  College of Mathematics and Physics, Suzhou University of Science and Technology, Suzhou 215007, China; more

Corresponding email(s):   litao@mail.usts.edu.cn, wjun@nuaa.edu.cn, liuhao-01@nuaa.edu.cn, lgliu@ustc.edu.cn

Key Words:  Mesh denoising, Guided normal filtering, Alternate vertex updating, Corner-aware neighborhoods


Tao Li, Jun Wang, Hao Liu, Li-gang Liu. Efficient mesh denoising via robust normal filtering and alternate vertex updating[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(11): 1828-1842.

@article{title="Efficient mesh denoising via robust normal filtering and alternate vertex updating",
author="Tao Li, Jun Wang, Hao Liu, Li-gang Liu",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="18",
number="11",
pages="1828-1842",
year="2017",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.1601229"
}

%0 Journal Article
%T Efficient mesh denoising via robust normal filtering and alternate vertex updating
%A Tao Li
%A Jun Wang
%A Hao Liu
%A Li-gang Liu
%J Frontiers of Information Technology & Electronic Engineering
%V 18
%N 11
%P 1828-1842
%@ 2095-9184
%D 2017
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.1601229

TY - JOUR
T1 - Efficient mesh denoising via robust normal filtering and alternate vertex updating
A1 - Tao Li
A1 - Jun Wang
A1 - Hao Liu
A1 - Li-gang Liu
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 18
IS - 11
SP - 1828
EP - 1842
%@ 2095-9184
Y1 - 2017
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.1601229


Abstract: 
The most challenging problem in mesh denoising is to distinguish features from noise. Based on the robust guided normal estimation and alternate vertex updating strategy, we investigate a new feature-preserving mesh denoising method. To accurately capture local structures around features, we propose a corner-aware neighborhood (CAN) scheme. By combining both overall normal distribution of all faces in a CAN and individual normal influence of the interested face, we give a new consistency measuring method, which greatly improves the reliability of the estimated guided normals. As the noise level lowers, we take as guidance the previous filtered normals, which coincides with the emerging rolling guidance idea. In the vertex updating process, we classify vertices according to filtered normals at each iteration and reposition vertices of distinct types alternately with individual regularization constraints. Experiments on a variety of synthetic and real data indicate that our method adapts to various noise, both Gaussian and impulsive, no matter in the normal direction or in a random direction, with few triangles flipped.

基于鲁棒法矢滤波和交替顶点更新的有效网格去噪

概要:区分特征和噪声是网格去噪中最具挑战性的问题。本文基于鲁棒的引导法矢估计和交替顶点更新策略,研究了一种新的、保持特征的网格去噪方法。为了准确地捕捉特征周围的局部结构,我们提出了一种角点敏感的邻域(corner-aware neighborhood, CAN)方案。本文将CAN中所有面的总体法矢分布及其相应面的个体法矢影响相结合,提出了一种新的一致性度量方法,大大提高了引导法矢估计的可靠性。随着噪声水平的降低,我们用前次迭代的得到滤波法矢作为引导进行联合双边滤波,其思想与新出现的rolling guidance方法是一致的。在顶点更新过程中,我们在每次迭代时都根据滤波后的法线对顶点进行分类,并在各自的正则化约束下交替地对不同类型的顶点进行重新定位。对各种合成数据和实际数据的实验表明,该方法能适应高斯噪声和脉冲噪声等不同类型的噪声,且无论噪声沿法矢方向还是沿随机方向分布,都不会出现翻转的三角片。

关键词:网格去噪;引导法矢滤波;交替顶点更新;角点敏感邻域

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Belyaev, A., Ohtake, Y., 2003. A comparison of mesh smoothing methods. Proc. Israel-Korea Bi-National Conf. on Geometric Modeling and Computer Graphics, p.83-87.

[2]Bian, Z., Tong, R.F., 2011. Feature-preserving mesh denoising based on vertices classification. Comput. Aided Geom. Des., 28(1):50-64.

[3]Chen, C.Y., Cheng, K.Y., 2005. A sharpness dependent filter for mesh smoothing. Comput. Aided Geom. Des., 22(5):376-391.

[4]Cho, H., Lee, H., Kang, H., et al., 2014. Bilateral texture filtering. ACM Trans. Graph., 33(4):128.1-128.8.

[5]Desbrun, M., Meyer, M., Schröder, P., et al., 1999. Implicit fairing of irregular meshes using diffusion and curvature flow. Proc. 26th Annual Conf. on Computer Graphics and Interactive Techniques, p.317-324.

[6]Fan, H.Q., Yu, Y.Z., Peng, Q.S., 2010. Robust feature-preserving mesh denoising based on consistent linebreak subneighborhoods. IEEE Trans. Vis. Comput. Graph., 16(2):312-324.

[7]Fleishman, S., Drori, I., Cochen-Or, D., 2003. Bilateral mesh denoising. ACM Trans. Graph., 22(3):950-953.

[8]He, L., Schaefer, S., 2013. Mesh denoising via l0 minimization. ACM Trans. Graph., 32(4):64.1-64.8.

[9]Jones, T.R., Durand, F., Desbrun, M., 2003. Non-iterative, feature-preserving mesh smoothing. ACM Trans. Graph., 22(3):943-949.

[10]Liu, L.G., Tai, C.L., Ji, Z.P., et al., 2007. Non-iterative approach for global mesh optimization. Comput. Aided Des., 39(9):772-782.

[11]Lu, X.Q., Deng, Z.G., Chen, W.Z., 2016. A robust scheme for feature-preserving mesh denoising. IEEE Trans. Vis. Comput. Graph., 22(3):1181-1194.

[12]Ohtake, Y., Belyaev, A., Bogaevski, I., 2001. Mesh regularization and adaptive smoothing. Comput. Aided Des., 33(11):789-800.

[13]Ohtake, Y., Belyaev, A., Yagou, H., 2002. Mesh smoothing via mean and median filtering applied to face normals. Proc. Geometric Modeling and Processing Conf., p.124-131.

[14]Shen, J., Maxim, B., Akingbehin, K., 2005. Accurate correction of surface noises of polygonal meshes. Int. J. Numer. Meth. Eng., 64(12):1678-1698.

[15]Solomon, J., Crane, K., Butscher, A., et al., 2014. A general framework for bilateral and mean shift filtering. arXiv:1405.4734.

[16]Sun, X.F., Rosin, P., Martin, R., et al., 2007. Fast and effective feature-preserving mesh denoising. IEEE Trans. Vis. Comput. Graph., 13(5):925-938.

[17]Sun, X.F., Rosin, P., Martin, R., et al., 2008. Random walks for feature-preserving mesh denoising. Comput. Aided Geom. Des., 25(7):437-456.

[18]Taubin, G., 1995. A signal processing approach to fair surface design. Proc. 22nd Annual Conf. on Computer Graphics and Interactive Techniques, p.351-358.

[19]Taubin, G., 2001. Linear Anisotropic Mesh Filtering. United States Patent Application 20040075659, USA.

[20]Wang, J., Zhang, X., Yu, Z.Y., 2012. A cascaded approach for feature-preserving surface mesh denoising. Comput. Aided Des., 44(7):597-610.

[21]Wang, P.S., Fu, X.M., Liu, Y., et al., 2015. Rolling guidance normal filter for geometric processing. ACM Trans. Graph., 34(6):17.1-17.9.

[22]Wang, R.M., Yang, Z.W., Liu, L.G., et al., 2014. Decoupling noise and features via weighted l1 analysis compressed sensing. ACM Trans. Graph., 33(2):18.1-18.12.

[23]Wei, M.Q., Shen, W.Y., Qin, J., et al., 2013. Feature-preserving optimization for noisy mesh using joint bilateral filter and constrained Laplacian smoothing. Opt. Laser Eng., 51(11):1223-1234.

[24]Wei, M.Q., Yu, J.Z., Pang, W.M., et al., 2015. Bi-normal filtering for mesh denoising. IEEE Trans. Vis. Comput. Graph., 21(1):43-55.

[25]Yagou, H., Ohtake, Y., Belyaev, A., 2003. Mesh denoising via iterative alpha-trimming and nonlinear diffusion of normals with automatic thresholding. Proc. Computer Graphics Int., p.28-34.

[26]Zhang, H.Y., Wu, C.L., Zhang, J.Y., et al., 2015. Variational mesh denoising using total variation and piecewise constant function space. IEEE Trans. Vis. Comput. Graph., 21(7):873-886.

[27]Zhang, W.Y., Deng, B.L., Zhang, J.Y., et al., 2015. Guided mesh normal filtering. Comput. Graph. Forum, 34(7): 23-34.

[28]Zheng, Y.Y., Fu, H.B., Au, O.K.C., et al., 2011. Bilateral normal filtering for mesh denoising. IEEE Trans. Vis. Comput. Graph., 17(10):1521-1530.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE