CLC number: TN929.5
On-line Access: 2017-02-10
Received: 2016-06-19
Revision Accepted: 2016-08-07
Crosschecked: 2016-12-13
Cited: 0
Clicked: 6560
Ji-liang Zhang, Gao-feng Pan, Yi-yuan Xie. Secrecy outage performance for wireless-powered relaying systems with nonlinear energy harvesters[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(2): 246-252.
@article{title="Secrecy outage performance for wireless-powered relaying systems with nonlinear energy harvesters",
author="Ji-liang Zhang, Gao-feng Pan, Yi-yuan Xie",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="18",
number="2",
pages="246-252",
year="2017",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.1601352"
}
%0 Journal Article
%T Secrecy outage performance for wireless-powered relaying systems with nonlinear energy harvesters
%A Ji-liang Zhang
%A Gao-feng Pan
%A Yi-yuan Xie
%J Frontiers of Information Technology & Electronic Engineering
%V 18
%N 2
%P 246-252
%@ 2095-9184
%D 2017
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.1601352
TY - JOUR
T1 - Secrecy outage performance for wireless-powered relaying systems with nonlinear energy harvesters
A1 - Ji-liang Zhang
A1 - Gao-feng Pan
A1 - Yi-yuan Xie
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 18
IS - 2
SP - 246
EP - 252
%@ 2095-9184
Y1 - 2017
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.1601352
Abstract: We consider a cooperative system consisting of a source node, a destination node, N (N>1) wireless-powered relays, and an eavesdropper. Each relay is assumed to be with a nonlinear energy harvester, in which there exists a saturation threshold, limiting the level of the harvested power. For decode-and-forward and power splitting protocols, the Kth best relay is selected to assist the source-relay-destination transmission. An analytical expression for the secrecy outage probability is derived, and also verified by simulation.
[1]Boshkovska, E., Ng, D.W.K., Zlatanov, N., et al., 2015. Practical non-linear energy harvesting model and resource allocation for SWIPT systems. IEEE Commun. Lett., 19(12):2082-2085.
[2]Chen, Y., 2016. Energy harvesting AF relaying in the presence of interference and Nakagami-m fading. IEEE Trans. Wirel. Commun., 15(2):1008-1017.
[3]Ding, Z., Krikidis, I., Sharif, B., et al., 2014a. Wireless information and power transfer in cooperative networks with spatially random relays. IEEE Trans. Wirel. Commun., 13(8):4440-4453.
[4]Ding, Z., Perlaza, S.M., Esnaola, I., et al., 2014b. Power allocation strategies in energy harvesting wireless cooperative networks. IEEE Trans. Wirel. Commun., 13(2):846-860.
[5]Ding, Z., Zhong, C., Ng, D.W.K., et al., 2015. Application of smart antenna technologies in simultaneous wireless information and power transfer. IEEE Commun. Mag., 53(4):86-93.
[6]Dong, Y., Hossain, M.J., Cheng, J., 2016. Performance of wireless powered amplify and forward relaying over Nakagami-m fading channels with nonlinear energy harvester. IEEE Commun. Lett., 20(4):672-675.
[7]Gradshteyn, I.S., Ryzhik, I.M., 2007. Table of Integrals, Series, and Products (7th Ed.). Academic Press, USA.
[8]Gu, Y., Aïssa, S., 2015. RF-based energy harvesting in decode-and-forward relaying systems: ergodic and outage capacities. IEEE Trans. Wirel. Commun., 14(11):6425-6434.
[9]Krikidis, I., Timotheou, S., Nikolaou, S., et al., 2014. Simultaneous wireless information and power transfer in modern communication systems. IEEE Commun. Mag., 52(11):104-110.
[10]Mo, J., Tao, M., Liu, Y., 2012. Relay placement for physical layer security: a secure connection perspective. IEEE Commun. Lett., 16(6):878-881.
[11]Ng, D.W.K., Lo, E.S., Schober, R., 2014. Robust beamforming for secure communication in systems with wireless information and power transfer. IEEE Trans. Wirel. Commun., 13(8):4599-4615.
[12]Pan, G., Tang, C., Li, T., et al., 2015. Secrecy performance analysis for SIMO simultaneous wireless information and power transfer systems. IEEE Trans. Commun., 63(9):3423-3433.
[13]Proakis, J.G., 2000. Digital Communications (4th Ed.). McGraw-Hill, USA.
[14]Wang, H.M., Xia, X.G., 2015. Enhancing wireless secrecy via cooperation: signal design and optimization. IEEE Commun. Mag., 53(12):47-53.
[15]Zhang, J.L., Pan, G.F., Wang, H.M., 2016. On physical-layer security in underlay cognitive radio networks with full-duplex wireless-powered secondary system. IEEE Access, 4:3887-3893.[doi:10.1109/ACCESS.2016.2591782]
[16]Zhou, Y., Pan, G., Li, T., et al., 2015. Secrecy outage performance for partial relay selection schemes in cooperative systems. IET Commun., 9(16):1980-1987.
[17]Zou, Y., Wang, X., Shen, W., 2013. Optimal relay selection for physical-layer security in cooperative wireless networks. IEEE J. Sel. Areas Commun., 31(10):2099-2111.
[18]Zou, Y., Champagne, B., Zhu, W.P., et al., 2015a. Relay-selection improves the security-reliability trade-off in cognitive radio systems. IEEE Trans. Commun., 63(1):215-228.
[19]Zou, Y., Zhu, J., Wang, X., et al., 2015b. Improving physical-layer security in wireless communications using diversity techniques. IEEE Netw., 29(1):42-48.
Open peer comments: Debate/Discuss/Question/Opinion
<1>