Full Text:   <956>

Summary:  <1043>

CLC number: TN929.5

On-line Access: 2020-11-13

Received: 2020-02-21

Revision Accepted: 2020-06-27

Crosschecked: 2020-09-16

Cited: 0

Clicked: 2306

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Wei-min Hou

https://orcid.org/0000-0003-0956-7057

Qing-shan Tang

https://orcid.org/0000-0002-8797-7732

-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering  2020 Vol.21 No.11 P.1651-1660

http://doi.org/10.1631/FITEE.2000083


Secure analysis on artificial-noise-aided simultaneous wireless information and power transfer systems


Author(s):  Wei-min Hou, Qing-shan Tang

Affiliation(s):  School of Information Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China; more

Corresponding email(s):   cstqs001@126.com

Key Words:  Artificial noise, Multi-antenna systems, Secrecy outage probability, Simultaneous wireless information and power transfer


Wei-min Hou, Qing-shan Tang. Secure analysis on artificial-noise-aided simultaneous wireless information and power transfer systems[J]. Frontiers of Information Technology & Electronic Engineering, 2020, 21(11): 1651-1660.

@article{title="Secure analysis on artificial-noise-aided simultaneous wireless information and power transfer systems",
author="Wei-min Hou, Qing-shan Tang",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="21",
number="11",
pages="1651-1660",
year="2020",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.2000083"
}

%0 Journal Article
%T Secure analysis on artificial-noise-aided simultaneous wireless information and power transfer systems
%A Wei-min Hou
%A Qing-shan Tang
%J Frontiers of Information Technology & Electronic Engineering
%V 21
%N 11
%P 1651-1660
%@ 2095-9184
%D 2020
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.2000083

TY - JOUR
T1 - Secure analysis on artificial-noise-aided simultaneous wireless information and power transfer systems
A1 - Wei-min Hou
A1 - Qing-shan Tang
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 21
IS - 11
SP - 1651
EP - 1660
%@ 2095-9184
Y1 - 2020
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.2000083


Abstract: 
In this paper, we investigate the secrecy outage performance in simultaneous wireless information and power transfer (SWIPT) systems taking artificial noise assistance into account. Multiple antennas in the source and a single antenna in both the legitimate receiver and the eavesdropper are assumed. Specifically, the transmitted signal at the source is composed of two parts, where the first part is the information symbols and the other is the noise for the eavesdropper. To avoid making noise in the legitimate receiver, these two parts in the transmitted signals are modulated into two orthogonal dimensions according to the instantaneous channel state between the source and the legitimate receiver. We derive an approximate closed-form expression for the secrecy outage probability (SOP) by adopting the Gauss-Laguerre quadrature (GLQ) method, where the gap between the exact SOP and our approximate SOP converges with increase of the summation terms in the GLQ. To obtain the secrecy diversity order and secrecy array gain for the considered SWIPT system, the asymptotic result of the SOP is also derived. This is tight in the high signal-to-noise ratio region. A novel and robust SOP approximation is also analyzed given a small variance of the signal-to-interference-plus-noise ratio at the eavesdropper. Some selected Monte-Carlo numerical results are presented to validate the correctness of the derived closed-form expressions.

人工噪声辅助的无线携能系统安全分析


侯卫民1,唐青善2
1河北科技大学信息科学与工程学院,中国石家庄市,050018
2长沙理工大学物理与电子科学学院,中国长沙市,410114

摘要:本文在无线携能(SWIPT)系统中研究通过人工噪声辅助的保密中断性能。假设信源装备多根天线,而合法接收者和窃密者均只有一根天线。具体而言,信源的发射信号由两部分组成:第一部分是信息符号;第二部分是给窃密者的噪声。为了不在合法接收端产生噪声干扰,根据信源和合法接收者之间的实时信道状态,发射信号里的这两部分被调制到两个正交的维度上。本文采用高斯-拉格瑞(GLQ)求积公式,求得保密中断概率(SOP)的一个近似闭式表达式。在这个表达式里,本文得到的近似SOP与准确SOP之间的误差会随着GLQ的求和项增多而逐渐消失。为得到这个SWIPT系统的保密分集增益和保密阵列增益,求取SOP的渐近结果。在高信噪比下,这个渐进SOP非常准确。在窃密者信干噪比相对较小情况下,还求得SOP的一个具有鲁棒性精度的近似表达式。最后,运用蒙特卡罗数值仿真验证所得闭式表达式的准确性。

关键词:人工噪声;多天线系统;保密中断概率;无线携能

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Bloch M, Barros J, Rodrigues MRD, et al., 2008. Wireless information-theoretic security. IEEE Trans Inform Theory, 54(6):2515-2534.

[2]Chen XM, Jia RD, 2018. Exploiting rateless coding for massive access. IEEE Trans Veh Technol, 67(11):11253-11257.

[3]Chen XM, Ng DWK, Gerstacker WH, et al., 2017. A survey on multiple-antenna techniques for physical layer security. IEEE Commun Surv Tutor, 19(2):1027-1053.

[4]Deng YS, Wang LF, Zaidi SAR, et al., 2016. Artificial-noise aided secure transmission in large scale spectrum sharing networks. IEEE Trans Commun, 64(5):2116-2129.

[5]El Shafie A, Tourki K, Al-Dhahir N, 2017. An artificial-noise-aided hybrid TS/PS scheme for OFDM-based SWIPT systems. IEEE Commun Lett, 21(3):632-635.

[6]Gradshteyn IS, Ryzhik IM, 2007. Table of Integrals, Series, and Products (7th Ed.). Academic Press, Salt Lake City, USA.

[7]Holtzman JM, 1992. A simple, accurate method to calculate spread-spectrum multiple-access error probabilities. IEEE Trans Commun, 40(3):461-464.

[8]Khandaker MRA, Masouros C, Wong KK, et al., 2019. Secure SWIPT by exploiting constructive interference and artificial noise. IEEE Trans Commun, 67(2):1326-1340.

[9]Liu YW, Qin ZJ, Elkashlan M, et al., 2017. Enhancing the physical layer security of non-orthogonal multiple access in large-scale networks. IEEE Trans Wirel Commun, 16(3):1656-1672.

[10]Pan GF, Tang CQ, Li TT, et al., 2015. Secrecy performance analysis for SIMO simultaneous wireless information and power transfer systems. IEEE Trans Commun, 63(9):3423-3433.

[11]Pan GF, Tang CQ, Zhang X, et al., 2016a. Physical-layer security over non-small-scale fading channels. IEEE Trans Veh Technol, 65(3):1326-1339.

[12]Pan GF, Lei HJ, Deng YS, et al., 2016b. On secrecy performance of MISO SWIPT systems with TAS and imperfect CSI. IEEE Trans Commun, 64(9):3831-3843.

[13]Pan GF, Lei HJ, Yuan Y, et al., 2017a. Performance analysis and optimization for SWIPT wireless sensor networks. IEEE Trans Commun, 65(5):2291-2302.

[14]Pan GF, Ye J, Ding ZG, 2017b. Secure hybrid VLC-RF systems with light energy harvesting. IEEE Trans Commun, 65(10):4348-4359.

[15]Qi Q, Chen XM, Zhong CJ, et al., 2020. Physical layer security for massive access in cellular Internet of Things. Sci China Inform Sci, 63(2):121301.

[16]Shi QJ, Liu L, Xu WQ, et al., 2014. Joint transmit beamforming and receive power splitting for MISO SWIPT systems. IEEE Trans Wirel Commun, 13(6):3269-3280.

[17]Sudevalayam S, Kulkarni P, 2011. Energy harvesting sensor nodes: survey and implications. IEEE Commun Surv Tutor, 13(3):443-461.

[18]Tian FY, Chen XM, 2019. Multiple-antenna techniques in nonorthogonal multiple access: a review. Front Inform Technol Electron Eng, 20(12):1665-1697.

[19]Wang ZJ, Zhao H, Wang S, et al., 2019. Secrecy analysis in SWIPT systems over generalized-$K$ fading channels. IEEE Commun Lett, 23(5):834-837.

[20]Yang N, Yan SH, Yuan JH, et al., 2015. Artificial noise: transmission optimization in multi-input single-output wiretap channels. IEEE Trans Commun, 63(5):1771-1783.

[21]Zhang M, Liu Y, Zhang R, 2016. Artificial noise aided secrecy information and power transfer in OFDMA systems. IEEE Trans Wirel Commun, 15(4):3085-3096.

[22]Zhang R, Ho CK, 2013. MIMO broadcasting for simultaneous wireless information and power transfer. IEEE Trans Wirel Commun, 12(5):1989-2001.

[23]Zhang X, McKay MR, Zhou XY, et al., 2015. Artificial-noise-aided secure multi-antenna transmission with limited feedback. IEEE Trans Wirel Commun, 14(5):2742-2754.

[24]Zhao H, Tan YY, Pan GF, et al., 2016. Secrecy outage on transmit antenna selection/maximal ratio combining in MIMO cognitive radio networks. IEEE Trans Veh Technol, 65(12):10236-10242.

[25]Zhao H, Tan YY, Pan GF, et al., 2017. Ergodic secrecy capacity of MRC/SC in single-input multiple-output wiretap systems with imperfect channel state information. Front Inform Technol Electron Eng, 18(4):578-590.

[26]Zhao H, Liu ZD, Yang L, et al., 2019a. Secrecy analysis in DF relay over generalized-K fading channels. IEEE Trans Commun, 67(10):7168-7182.

[27]Zhao H, Zhang JY, Yang L, et al., 2019b. Secure mmWave communications in cognitive radio networks. IEEE Wirel Commun Lett, 8(4):1171-1174.

[28]Zhao H, Liu YW, Sultan-Salem A, et al., 2019c. A simple evaluation for the secrecy outage probability over generalized-K 10.1109/LCOMM.2019.2926360 29 IEEE Trans Commun, 61(11):4754-4767.

[30]Zou YL, Champagne B, Zhu WP, et al., 2015. Relay-selection improves the security-reliability trade-off in cognitive radio systems. IEEE Trans Commun, 63(1):215-228.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2022 Journal of Zhejiang University-SCIENCE