Full Text:   <2478>

Summary:  <1861>

CLC number: O441.1; TN711.3

On-line Access: 2017-09-08

Received: 2016-10-18

Revision Accepted: 2017-03-12

Crosschecked: 2017-08-14

Cited: 0

Clicked: 6563

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Zhi-zhong Tan

http://orcid.org/0000-0001-6068-3112

-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering  2017 Vol.18 No.8 P.1186-1196

http://doi.org/10.1631/FITEE.1601560


A fractional-order multifunctional n-step honeycomb RLC circuit network


Author(s):  Ling Zhou, Zhi-zhong Tan, Qing-hua Zhang

Affiliation(s):  Department of Physics, Nantong University, Nantong 226019, China; more

Corresponding email(s):   zl7103@163.com, tanz@ntu.edu.cn

Key Words:  Honeycomb network, Equivalent transformation, Fractional differential equation, Impedance characteristics


Ling Zhou, Zhi-zhong Tan, Qing-hua Zhang. A fractional-order multifunctional n-step honeycomb RLC circuit network[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(8): 1186-1196.

@article{title="A fractional-order multifunctional n-step honeycomb RLC circuit network",
author="Ling Zhou, Zhi-zhong Tan, Qing-hua Zhang",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="18",
number="8",
pages="1186-1196",
year="2017",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.1601560"
}

%0 Journal Article
%T A fractional-order multifunctional n-step honeycomb RLC circuit network
%A Ling Zhou
%A Zhi-zhong Tan
%A Qing-hua Zhang
%J Frontiers of Information Technology & Electronic Engineering
%V 18
%N 8
%P 1186-1196
%@ 2095-9184
%D 2017
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.1601560

TY - JOUR
T1 - A fractional-order multifunctional n-step honeycomb RLC circuit network
A1 - Ling Zhou
A1 - Zhi-zhong Tan
A1 - Qing-hua Zhang
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 18
IS - 8
SP - 1186
EP - 1196
%@ 2095-9184
Y1 - 2017
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.1601560


Abstract: 
We investigate a multifunctional n-step honeycomb network which has not been studied before. By adjusting the circuit parameters, such a network can be transformed into several different networks with a variety of functions, such as a regular ladder network and a triangular network. We derive two new formulae for equivalent resistance in the resistor network and equivalent impedance in the LC network, which are in the fractional-order domain. First, we simplify the complex network into a simple equivalent model. Second, using Kirchhoff’s laws, we establish a fractional difference equation. Third, we construct an equivalent transformation method to obtain a general solution for the nonlinear differential equation. In practical applications, several interesting special results are obtained. In particular, an n-step impedance LC network is discussed and many new characteristics of complex impedance have been found.

一类分数阶多功能n阶蜂巢型RLC电路网络

概要:研究了一类多功能n阶蜂巢型电阻网络模型,该问题一直未被解决。通过调节电路参数,该网络模型可以转化为含有多种功能的数个不同网络模型,例如一个规则的梯形网络、一个n阶三角形网络,等。我们导出了电阻网络的2个新的等效电阻公式,同时导出了LC网络的等效复阻抗公式,它们都属于分数阶范畴。首先,将一个复杂网络简化为一个简单的等效模型;其次,应用基尔霍夫定律,建立一个分式差分方程模型;再次,采用等效变换方法,给出非线性差分方程的通解。在实际应用中,获得了数个有趣的特殊结论。特别地,讨论分析了一个n阶LC复阻抗网络,发现了许多新的等效复阻抗特性。

关键词:蜂巢型网络;等效变换;分数阶差分方程;复阻抗特性

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Asad, J.H., 2013a. Exact evaluation of the resistance in an infinite face-centered cubic network. J. Stat. Phys., 150(6):1177-1182.

[2]Asad, J.H., 2013b. Infinite simple 3D cubic network of identical capacitors. Mod. Phys. Lett. B, 27(15):151350112.

[3]Asad, J.H., Diab, A.A., Hijjawi, R.S., et al., 2013. Infinite face-centered-cubic network of identical resistors: application to lattice Green’s function. Eur. Phys. J. Plus, 128(2):1-5.

[4]Biswas, K., Sen, S., Dutta, P., 2006. Realization of a constant phase element and its performance study in a differentiator circuit. IEEE Trans. Circ. Syst. II, 53(9):802-806.

[5]Chen, P., He, S.B., 2013. Analysis of the fractional-order parallel tank circuit. J. Circ. Syst. Comput., 22(6): 1350047.

[6]Cserti, J., 2000. Application of the lattice Green’s function for calculating the resistance of an infinite network of resistors. Am. J. Phys., 68(10):896-906.

[7]Elshurafa, A.M., Almadhoun, M.N., Salama, K.N., et al., 2013. Microscale electrostatic fractional capacitors using reduced graphene oxide percolated polymer composites. Appl. Phys. Lett., 102(23):232901.

[8]Essam, J.W., Tan, Z.Z., Wu, F.Y., 2014. Resistance between two nodes in general position on an m×n fan network. Phys. Rev. E, 90(3):032130.

[9]Essam, J.W., Nsh, I., Kenna, R., et al., 2015. Comparison of methods to determine point-to-point resistance in nearly rectangular networks with application to a ‘hammock’ network. R. Soc. Open Sci., 2(4):140420.

[10]Gabelli, J., Fève, G., Berroir, J.M., et al., 2006. Violation of Kirchhoff’s laws for a coherent RC circuit. Science, 313(5786):499-502.

[11]Izmailian, N.S., Huang, M.C., 2010. Asymptotic expansion for the resistance between two maximum separated nodes on an M×N resistor network. Phys. Rev. E, 82(1 Pt 1): 011125.

[12]Izmailian, N.S., Kenna, R., 2014. A generalised formulation of the Laplacian approach to resistor networks. J. Stat. Mech. Theor. Exp., 9(9):P09016.

[13]Izmailian, N.S., Kenna, R., Wu, F.Y., 2014. The two-point resistance of a resistor network: a new formulation and application to the cobweb network. J. Phys. A, 47(3): 035003.

[14]Jia, H.Y., Chen, Z.Q., Qi, G.Y., 2013. Topological horseshoe analysis and circuit realization for a fractional-order Lu system. Nonl. Dynam., 74(1-2):203-212.

[15]Klein, D.J., Randi, M., 1993. Resistance distance. J. Math. Chem., 12(1):81-95.

[16]Machado, J.A.T., Galhano, A.M.S.F., 2012. Fractional order inductive phenomena based on the skin effect. Nonl. Dynam., 68(1):107-115.

[17]Radwan, A.G., Salama, K.N., 2011. Passive and active elements using fractional LβCα circuit. IEEE Trans. Circ. Syst. I, 58(10):2388-2397.

[18]Radwan, A.G., Salama, K.N., 2012. Fractional-order RC and RL circuit. Circ. Syst. Signal Process., 31(6):1901-1915.

[19]Tan, Z.Z., 2011. Resistor Network Model. Xidian University Press, Xi’an, China, p.28-88 (in Chinese).

[20]Tan, Z.Z., 2012. A universal formula of the n-th power of 2×2 matrix and its applications. J. Nantong Univ., 11(1): 87-94.

[21]Tan, Z.Z., 2015a. Recursion-transform approach to compute the resistance of a resistor network with an arbitrary boundary. Chin. Phys. B, 24(2):020503.

[22]Tan, Z.Z., 2015b. Recursion-transform method for computing resistance of the complex resistor network with three arbitrary boundaries. Phys. Rev. E, 91(5):052122.

[23]Tan, Z.Z., 2015c. Recursion-transform method to a non-regular m×n cobweb with an arbitrary longitude. Sci. Rep., 5:11266.

[24]Tan, Z.Z., 2015d. Theory on resistance of m×n cobweb network and its application. Int. J. Circ. Theor. Appl., 43(11): 1687-1702.

[25]Tan, Z.Z., 2016. Two-point resistance of an m×n resistor network with an arbitrary boundary and its application in RLC network. Chin. Phys. B, 25(5):050504.

[26]Tan, Z.Z., Fang, J.H., 2015. Two-point resistance of a cobweb network with a 2r boundary. Theor. Phys., 63(1):36-44.

[27]Tan, Z.Z., Zhang, Q.H., 2015. Formulae of resistance between two corner nodes on a common edge of the m×n rectangular network. Int. J. Circ. Theor. Appl., 43(7):944-958.

[28]Tan, Z.Z., Zhou, L., Yang, J.H., 2013. The equivalent resistance of a 3×n cobweb network and its conjecture of an m×n cobweb network. J. Phys. A, 46(19):195202.

[29]Tan, Z.Z., Essam, J.W., Wu, F.Y., 2014. Two-point resistance of a resistor network embedded on a globe. Phys. Rev. E, 90(1):012130.

[30]Tan, Z.Z., Zhou, L., Luo, D.F., 2015. Resistance and capacitance of 4×n cobweb network and two conjectures. Int. J. Circ. Theor. Appl., 43(3):329-341.

[31]Tzeng, W.J., Wu, F.Y., 2006. Theory of impedance networks: the two-point impedance and LC resonances. J. Phys. A, 39(27):8579.

[32]Wang, F.Q., Ma, X.K., 2013. Modeling and analysis of the fractional order buck converter in DCM operation by using fractional calculus and the circuit-averaging technique. J. Power Electron., 13(6):1008-1015.

[33]Whan, C.B., Lobb, C.J., 1996. Complex dynamical behavior in RCL shunted Josephson tunnel junctions. Phys. Rev. E, 5(2):405-413.

[34]Wu, F.Y., 2004. Theory of resistor networks: the two-point resistance. J. Phys. A, 37(26):6653-6673.

[35]Xiao, W.J., Gutman, I., 2003. Resistance distance and Laplacian spectrum. Theor. Chem. Acc., 110(4):284-289.

[36]Zhou, P., Huang, K., 2014. A new 4-D non-equilibrium fractional-order chaotic system and its circuit implementation. Commun. Nonl. Sci. Numer. Simul., 19(6):2005-2011.

[37]Zhuang, J., Yu, G.R., Nakayama, K., 2014. A series RCL circuit theory for analyzing non-steady-state water uptake of maize plants. Sci. Rep., 4(4):6720.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE