CLC number: TN92
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2018-03-05
Cited: 0
Clicked: 6559
Fang-lin Gu, Shan Wang, Wen-wu Wang. Standard-independent I/Q imbalance estimation and compensation scheme in OFDM direct-conversion transceivers[J]. Frontiers of Information Technology & Electronic Engineering, 2018, 19(3): 388-397.
@article{title="Standard-independent I/Q imbalance estimation and compensation scheme in OFDM direct-conversion transceivers",
author="Fang-lin Gu, Shan Wang, Wen-wu Wang",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="19",
number="3",
pages="388-397",
year="2018",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.1700003"
}
%0 Journal Article
%T Standard-independent I/Q imbalance estimation and compensation scheme in OFDM direct-conversion transceivers
%A Fang-lin Gu
%A Shan Wang
%A Wen-wu Wang
%J Frontiers of Information Technology & Electronic Engineering
%V 19
%N 3
%P 388-397
%@ 2095-9184
%D 2018
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.1700003
TY - JOUR
T1 - Standard-independent I/Q imbalance estimation and compensation scheme in OFDM direct-conversion transceivers
A1 - Fang-lin Gu
A1 - Shan Wang
A1 - Wen-wu Wang
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 19
IS - 3
SP - 388
EP - 397
%@ 2095-9184
Y1 - 2018
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.1700003
Abstract: Direct-conversion transceivers are gaining increasing attention due to their low power consumption. However, they suffer from a serious in- and quadrature-phase (I/Q) imbalance problem. The I/Q imbalance can severely limit the achievable operating signal-to-noise ratio (SNR) at the receiver and, consequently, the supported constellation sizes and data rates. In this paper, we first investigate the effects of I/Q imbalance on orthogonal frequency division multiplexing (OFDM) receivers, and then propose a new I/Q imbalance compensation scheme. In the proposed method, a new statistic, which is robust against channel distortion, is used to estimate the I/Q imbalance parameters, and then the I/Q imbalance is corrected in the frequency domain. Simulations are performed to verify the effectiveness of the proposed method for I/Q imbalance compensation. The results show that the proposed I/Q imbalance compensation method can achieve bit error rate (BER) performance close to that in the ideal case without I/Q imbalance in additive white Gaussian noise (AWGN) or multipath environments. Furthermore, because no pilot information is required, this method can be applied in various standard communication systems.
[1]Abidi AA, 1995. Direct-conversion radio transceivers for digital communications. IEEE J Sol-State Circ, 30(12):1399-1410.
[2]Anttila L, 2011. Digital Front-End Signal Processing with Widely-Linear Signal Models in Radio Devices. PhD Thesis, Tampere University of Technology, Tempere, Finland.
[3]Anttila L, Valkama M, 2013. Blind signal estimation in widely-linear signal models with fourth-order circularity:algorithms and application to receiver I/Q calibration. IEEE Signal Process Lett, 20(3):221-224.
[4]Chen S, Zhao J, 2014. The requirements, challenges, and technologies for 5G of terrestrial mobile telecommunication. IEEE Commun Mag, 52(5):36-43.
[5]Dawkins MT, 2002. Up-Integration in Radio-Frequency Tuners for Digital Terrestrial Television. PhD Thesis, University of London, UK.
[6]Gu F, Wang S, Wei J, et al., 2016. Higher-order circularity based I/Q imbalance compensation in direct-conversion receivers. IEEE Int Conf on Vehicular Technology, p.1-6.
[7]He L, Ma S, Wu Y, et al., 2011. Pilot-aided IQ imbalance compensation for OFDM systems operating over doubly selective channels. IEEE Trans Signal Process, 59(5):2223-2233.
[8]Hieu NT, Ryu HG, Wang CX, et al., 2007. The impact of the I/Q mismatching errors on the BER performance of OFDM communication systems. IEEE Int Conf on Communications, p.5423-5427.
[9]IEEE, 1999. Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications:high-speed physical layer in the 5 GHz band. IEEE Std 802.11a-1999.
[10]Inamori M, Bostamam AM, Sanada Y, et al., 2009. IQ imbalance compensation scheme in the presence of frequency offset and dynamic DC offset for a direct conversion receiver. IEEE Trans Wirel Commun, 8(5):2214-2220.
[11]Kim S, Yoon D, Park H, et al., 2014. A fast and precise blind I/Q mismatch compensation for image rejection in direct-conversion receiver. ETRI J, 36(1):12-21.
[12]Koffman I, Roman V, 2002. Broadband wireless access solutions based on OFDM access in IEEE 802.16. IEEE Commun Mag, 40(4):96-103.
[13]Lopez-Martinez FJ, Martos-Naya E, Paris JF, et al., 2011. Exact closed-form BER analysis of OFDM systems in the presence of IQ imbalances and ICSA. IEEE Trans Wirel Commun, 10(6):1914-1922.
[14]Reimers U, 1997. DVB-T:the COFDM-based system for terrestrial television. Electron Commun Eng J, 9(1):28-32.
[15]Shelswell P, 1995. The COFDM modulation system:the heart of digital audio broadcasting. Electron Commun Eng J, 7(3):127-136.
[16]Sung K, Chao C, 2009. Estimation and compensation of I/Q imbalance in OFDM direct-conversion receivers. IEEE J Sel Top Signal Process, 3(3):438-453.
[17]Tandur D, Moonen M, 2007. Joint adaptive compensation of transmitter and receiver IQ imbalance under carrier frequency offset in OFDM-based systems. IEEE Trans Signal Process, 55(11):5246-5252.
[18]Tarighat A, Bagheri R, Sayed AH, 2005. Compensation schemes and performance analysis of IQ imbalances in OFDM receivers. IEEE Trans Signal Process, 53(8):3257-3268.
[19]Windisch M, Fettweis G, 2004. Standard-independent I/Q imbalance compensation in OFDM direct-conversion receivers. Int OFDM Workshop, p.57-61.
[20]Wu F, Li Y, Zhao M, 2014. Estimation of TX I/Q imbalance at the RX side with RX I/Q imbalance and carrier frequency offset for OFDM systems. IEEE Int Conf on Globecom, p.960-965.
[21]Yang L, Panta K, Armstrong J, 2013. Impact of timing jitter and I/Q imbalance in OFDM systems. IEEE Commun Lett, 17(2):253-256.
[22]Ylamurto TM, 2003. Frequency domain IQ imbalance correction scheme for orthogonal frequency division multiplexing (OFDM) systems. IEEE Wireless Communications Networking Conf, p.20-25.
Open peer comments: Debate/Discuss/Question/Opinion
<1>