Full Text:   <2294>

Summary:  <1921>

CLC number: TN92

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 2017-05-08

Cited: 1

Clicked: 6785

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Kang-li Zhang

http://orcid.org/0000-0002-3889-9117

-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering  2017 Vol.18 No.6 P.788-795

http://doi.org/10.1631/FITEE.1700018


Efficient detection methods for amplify-and-forward relay-aided device-to-device systems with full-rate space-time block code


Author(s):  Kang-li Zhang, Cong Zhang, Fang-lin Gu, Jian Wang

Affiliation(s):  College of Electronic Science and Engineering, National University of Defence Technology, Changsha 410073, China; more

Corresponding email(s):   zkl8855@163.com, gu.fanglin@nudt.edu.cn

Key Words:  Device-to-device, Relay, Detection, Full-rate space-time block code


Kang-li Zhang, Cong Zhang, Fang-lin Gu, Jian Wang. Efficient detection methods for amplify-and-forward relay-aided device-to-device systems with full-rate space-time block code[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(6): 788-795.

@article{title="Efficient detection methods for amplify-and-forward relay-aided device-to-device systems with full-rate space-time block code",
author="Kang-li Zhang, Cong Zhang, Fang-lin Gu, Jian Wang",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="18",
number="6",
pages="788-795",
year="2017",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.1700018"
}

%0 Journal Article
%T Efficient detection methods for amplify-and-forward relay-aided device-to-device systems with full-rate space-time block code
%A Kang-li Zhang
%A Cong Zhang
%A Fang-lin Gu
%A Jian Wang
%J Frontiers of Information Technology & Electronic Engineering
%V 18
%N 6
%P 788-795
%@ 2095-9184
%D 2017
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.1700018

TY - JOUR
T1 - Efficient detection methods for amplify-and-forward relay-aided device-to-device systems with full-rate space-time block code
A1 - Kang-li Zhang
A1 - Cong Zhang
A1 - Fang-lin Gu
A1 - Jian Wang
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 18
IS - 6
SP - 788
EP - 795
%@ 2095-9184
Y1 - 2017
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.1700018


Abstract: 
relay-aided device-to-device (D2D) communication is a promising technology for the next-generation cellular network. We study the transmission schemes for an amplify-and-forward relay-aided D2D system which has multiple antennas. To circumvent the prohibitive complexity problem of traditional maximum likelihood (ML) detection for full-rate space-time block code (FSTBC) transmission, two low-complexity detection methods are proposed, i.e., the detection methods with the ML-combining (MLC) algorithm and the joint conditional ML (JCML) detector. Particularly, the method with the JCML detector reduces detection delay at the cost of more storage and performs well with parallel implementation. Simulation results indicate that the proposed detection methods achieve a symbol error probability similar to that of the traditional ML detector for FSTBC transmission but with less complexity, and the performance of FSTBC transmission is significantly better than that of spatial multiplexing transmission. Diversity analysis for the proposed detection methods is also demonstrated by simulations.

基于采用全速率空时块码的放大转发中继辅助设备到设备通信系统的有效检测方法

概要:中继辅助设备到设备通信是下一代蜂窝网络中一项极具潜力的技术。研究了适用于配置多天线的放大转发中继辅助设备到设备通信系统的不同传输方案。为了解决基于全速率空时块码传输方案的传统最大似然检测算法复杂度高的问题,文中提出两种低复杂度检测方法,分别为采用最大似然合并算法的检测方法和采用联合条件最大似然检测器的检测方法。特别是,所提的基于联合条件最大似然检测器的检测方法,能够通过牺牲一定的存储空间换取较好的并行处理能力。仿真结果表明:针对采用全速率空时块码传输方案提出的两种检测方法,能够获得与传统最大似然检测方法近乎相同的误符号率,但所提检测方法复杂度更低;同时,采用基于全速率空时块码的传输方案比复用传输方案具有更优的误码性能。仿真结果还进一步验证了对所提检测方法的分集增益分析。

关键词:设备到设备通信;中继;检测;全速率空时块码

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Ali, M., Qaisar, S., Naeem, M., et al., 2016. Energy efficient resource allocation in D2D-assisted heterogeneous networks with relays. IEEE Access, 4:4902-4911.

[2]Belfiore, J., Rekaya, G., Viterbo, E., 2005. The golden code: a $2times2$ full-rate space-time code with nonvanishing determinants. IEEE Trans. Inform. Theory, 51(4):1432-1436.

[3]Chen, Y., 2016. An efficient data exchanged and detection scheme for two-way relay based D2D communications. Proc. 83rd IEEE Vehicular Technology Conf., p.1-5.

[4]Gao, C., Li, Y., Zhao, Y., et al., 2016. A two-level game theory approach for joint relay selection and resource allocation in network coding assisted D2D communications. IEEE Trans. Mob. Comput., in press.

[5]Hoang, T.D., Le, L.B., Le-Ngoc, T., 2017. Joint mode selection and resource allocation for relay-based D2D communications. IEEE Commun. Lett., 21(2):398-401.

[6]Horn, R.A., Johnson, C.R., 1985. Matrix Analysis. Cambridge University Press, New York, USA.

[7]Jayasinghe, K., Jayasinghe, P., Rajatheva, N., et al., 2015. Physical layer security for relay assisted MIMO D2D communication. Proc. IEEE Int. Conf. on Communication Workshop, p.651-656.

[8]Kim, T., Dong, M., 2014. An iterative Hungarian method to joint relay selection and resource allocation for D2D communications. IEEE Wirel. Commun. Lett., 3(6): 625-628.

[9]Kong, T., Hua, Y., 2011. Optimal design of source and relay pilots for MIMO relay channel estimation. IEEE Trans. Signal Process., 59(9):4438-4446.

[10]Pan, X., Wang, H., 2016. On the performance analysis and relay algorithm design in social-aware D2D cooperated communications. Proc. 83rd IEEE Vehicular Technology Conf., p.1-5.

[11]Rong, Y., Khandaker, M., Xiang, Y., 2012. Channel estimation of dual-hop MIMO relay system via parallel factor analysis. IEEE Trans. Wirel. Commun., 11(6):2224-2233.

[12]Sezginer, S., Sari, H., 2007. Full-rate full-diversity $2 times 2$ space-time codes of reduced decoder complexity. IEEE Commun. Lett., 11(12):973-975.

[13]Tehrani, M.N., Uysal, M., Yanikomeroglu, H., 2014. Device-to-device communication in 5G cellular networks: challenges, solutions, and future directions. IEEE Commun. Mag., 52(5):86-92.

[14]Vakilian, V., Mehrpouyan, H., 2016. High-rate and low-complexity space-time block codes for $2 times 2$ MIMO systems. IEEE Commun. Lett., 20(6):1227-1230.

[15]Winters, J.H., 1998. The diversity gain of transmit diversity in wireless systems with Rayleigh fading. IEEE Trans. Veh. Technol., 47(1):119-123.

[16]Zhang, G., Yang, K., Liu, P., et al., 2015. Power allocation for full-duplex relaying-based D2D communication underlaying cellular networks. IEEE Trans. Veh. Technol., 64(10):4911-4916.

[17]Zhang, K., Xiong, C., Chen, B., et al., 2015. A maximum likelihood combining algorithm for spatial multiplexing MIMO amplify-and-forward relaying systems. IEEE Trans. Veh. Technol., 64(12):5767-5774.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE