Full Text:   <5305>

Summary:  <4301>

CLC number: TN929.5

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 2017-06-05

Cited: 1

Clicked: 11329

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Zhao-yang Zhang

http://orcid.org/0000-0003-2346-6228

-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering  2017 Vol.18 No.6 P.830-840

http://doi.org/10.1631/FITEE.1700047


Interference coordination in full-duplex HetNet with large-scale antenna arrays


Author(s):  Zhao-yang Zhang, Wei Lyu

Affiliation(s):  College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310027, China

Corresponding email(s):   ning_ming@zju.edu.cn, levy_lv@zju.edu.cn

Key Words:  Massive MIMO, Full-duplex, Small cell, Wireless backhaul, Distributed algorithm


Zhao-yang Zhang, Wei Lyu. Interference coordination in full-duplex HetNet with large-scale antenna arrays[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(6): 830-840.

@article{title="Interference coordination in full-duplex HetNet with large-scale antenna arrays",
author="Zhao-yang Zhang, Wei Lyu",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="18",
number="6",
pages="830-840",
year="2017",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.1700047"
}

%0 Journal Article
%T Interference coordination in full-duplex HetNet with large-scale antenna arrays
%A Zhao-yang Zhang
%A Wei Lyu
%J Frontiers of Information Technology & Electronic Engineering
%V 18
%N 6
%P 830-840
%@ 2095-9184
%D 2017
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.1700047

TY - JOUR
T1 - Interference coordination in full-duplex HetNet with large-scale antenna arrays
A1 - Zhao-yang Zhang
A1 - Wei Lyu
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 18
IS - 6
SP - 830
EP - 840
%@ 2095-9184
Y1 - 2017
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.1700047


Abstract: 
Massive multiple-input multiple-output (MIMO), small cell, and full-duplex are promising techniques for future 5G communication systems, where interference has become the most challenging issue to be addressed. In this paper, we provide an interference coordination framework for a two-tier heterogeneous network (HetNet) that consists of a massive-MIMO enabled macro-cell base station (MBS) and a number of full-duplex small-cell base stations (SBSs). To suppress the interferences and maximize the throughput, the full-duplex mode of each SBS at the wireless backhaul link (i.e., in-band or out-of-band), which has a different impact on the interference pattern, should be carefully selected. To address this problem, we propose two centralized algorithms, a genetic algorithm (GEA) and a greedy algorithm (GRA). To sufficiently reduce the computational overhead of the MBS, a distributed graph coloring algorithm (DGCA) based on price is further proposed. Numerical results demonstrate that the proposed algorithms significantly improve the system throughput.

大规模天线阵列下全双工异构网络的干扰协调

概要:对于未来的第五代通信系统,干扰协调已经成为最具挑战性的问题,而大规模多输入多输出、小蜂窝和全双工技术均是在此背景下充满前景的技术。提出一个针对两层异构网络的干扰协调框架,该异构网络包含了一个装备大规模天线阵列的宏蜂窝基站和大量使用全双工技术的小蜂窝基站。因为带内全双工和带外全双工会产生不同的干扰模式,为了抑制干扰和最大化网络吞吐量,每个小蜂窝基站在无线回程链路的全双工模式都应慎重选择。为解决此模式选择问题,提出两种集中式算法,分别是遗传算法和贪心算法。此外,为了更充分降低宏蜂窝基站的计算开销,进一步提出一种基于代价的分布式图染色算法。仿真结果表明:提出的算法显著提高了系统吞吐量。

关键词:大规模多输入多输出;全双工;小蜂窝;无线回程链路;分布式算法

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]3GPP, 2012a. Evolved universal terrestrial radio access (E-UTRA); LTE physical layer; general description. Technical Specification No. 36.201 (v11.1.0), 3rd Generation Partnership Project.

[2]3GPP, 2012b. Evolved universal terrestrial radio access (E-UTRA); further enhancements to LTE time division duplex (TDD) for downlink-uplink (DL-UL) interference management and traffic adaptation. Technical Report No. 36.828 (v11.0.0), 3rd Generation Partnership Project.

[3]Bharadia, D., Katti, S., 2016. Full-duplex radios. In: Vannithamby, R., Talwar, S. (Eds.), Towards 5G: Applications, Requirements and Candidate Technologies. John Wiley & Sons, p.365-394.

[4]Boccardi, F., Heath, R., Lozano, A., et al., 2014. Five disruptive technology directions for 5G. IEEE Commun. Mag., 52(2):74-80.

[5]Brélaz, D., 1979. New methods to color the vertices of a graph. Commun. ACM, 22(4):251-256.

[6]Choi, J.I., Jain, M., Srinivasan, K., et al., 2010. Achieving single channel, full duplex wireless communication. 16th Annual Int. Conf. on Mobile Computing and Networking, p.1-12.

[7]Goyal, S., Liu, P., Hua, S., et al., 2013. Analyzing a full-duplex cellular system. 47th Annual Conf. on Information Sciences and Systems, p.1-6.

[8]Goyal, S., Liu, P., Panwar, S., et al., 2014. Improving small cell capacity with common-carrier full duplex radios. IEEE Int. Conf. on Communications, p.4987-4993.

[9]Hosseini, K., Hoydis, J., ten Brink, S., et al., 2013. Massive MIMO and small cells: how to densify heterogeneous networks. IEEE Int. Conf. on Communications, p.5442-5447.

[10]Hoydis, J., Kobayashi, M., Debbah, M., 2011. Green small-cell networks. IEEE Veh. Technol. Mag., 6(1):37-43.

[11]Hoydis, J., Hosseini, K., ten Brink, S., et al., 2013. Making smart use of excess antennas: massive MIMO, small cells, and TDD. Bell Labs Techn. J., 18(2):5-21.

[12]Jain, M., Choi, J.I., Kim, T., et al., 2011. Practical, real-time, full duplex wireless. 17th Annual Int. Conf. on Mobile Computing and Networking, p.301-312.

[13]Kim, S., Cho, I., 2013. Graph-based dynamic channel assignment scheme for femtocell networks. IEEE Commun. Lett., 17(9):1718-1721.

[14]Larsson, E., Edfors, O., Tufvesson, F., et al., 2014. Massive MIMO for next generation wireless systems. IEEE Commun. Mag., 52(2):186-195.

[15]Li, B., Zhu, D., Liang, P., 2015. Small cell in-band wireless backhaul in massive MIMO systems: a cooperation of next-generation techniques. IEEE Trans. Wirel. Commun., 14(12):7057-7069.

[16]Liu, G., Yu, F.R., Ji, H., et al., 2015. In-band full-duplex relaying: a survey, research issues and challenges. IEEE Commun. Surv. Tutor., 17(2):500-524.

[17]Marzetta, T.L., 2010. Noncooperative cellular wireless with unlimited numbers of base station antennas. IEEE Trans. Wirel. Commun., 9(11):3590-3600.

[18]Rusek, F., Persson, D., Lau, B.K., et al., 2013. Scaling up MIMO: opportunities and challenges with very large arrays. IEEE Signal Process. Mag., 30(1):40-60.

[19]Sabharwal, A., Schniter, P., Guo, D., et al., 2014. In-band full-duplex wireless: challenges and opportunities. IEEE J. Sel. Areas Commun., 32(9):1637-1652.

[20]Tabassum, H., Sakr, A.H., Hossain, E., 2016. Analysis of massive MIMO-enabled downlink wireless backhauling for full-duplex small cells. IEEE Trans. Commun., 64(6):2354-2369.

[21]Thilina, K.M., Tabassum, H., Hossain, E., et al., 2015. Medium access control design for full duplex wireless systems: challenges and approaches. IEEECommun. Mag. , 53(5):112-120.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE