Full Text:   <3634>

CLC number: TP242.6

On-line Access: 2019-03-11

Received: 2017-03-25

Revision Accepted: 2018-01-25

Crosschecked: 2019-02-15

Cited: 0

Clicked: 7722

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Kil To Chong

http://orcid.org/0000-0002-1952-0001

-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering  2019 Vol.20 No.2 P.141-151

http://doi.org/10.1631/FITEE.1700206


Adaptive network fuzzy inference system based navigation controller for mobile robot


Author(s):  Panati Subbash, Kil To Chong

Affiliation(s):  Department of Electronics and Information Engineering, Chonbuk National University, Jeonju 54896, Republic of Korea; more

Corresponding email(s):   kitchong@jbnu.ac.kr

Key Words:  Adaptive network fuzzy inference system, Additive white Gaussian noise, Autonomous navigation, Mobile robot


Share this article to: More |Next Article >>>

Panati Subbash, Kil To Chong. Adaptive network fuzzy inference system based navigation controller for mobile robot[J]. Frontiers of Information Technology & Electronic Engineering, 2019, 20(2): 141-151.

@article{title="Adaptive network fuzzy inference system based navigation controller for mobile robot",
author="Panati Subbash, Kil To Chong",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="20",
number="2",
pages="141-151",
year="2019",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.1700206"
}

%0 Journal Article
%T Adaptive network fuzzy inference system based navigation controller for mobile robot
%A Panati Subbash
%A Kil To Chong
%J Frontiers of Information Technology & Electronic Engineering
%V 20
%N 2
%P 141-151
%@ 2095-9184
%D 2019
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.1700206

TY - JOUR
T1 - Adaptive network fuzzy inference system based navigation controller for mobile robot
A1 - Panati Subbash
A1 - Kil To Chong
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 20
IS - 2
SP - 141
EP - 151
%@ 2095-9184
Y1 - 2019
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.1700206


Abstract: 
autonomous navigation of a mobile robot in an unknown environment with highly cluttered obstacles is a fundamental issue in mobile robotics research. We propose an adaptive network fuzzy inference system (ANFIS) based navigation controller for a differential drive mobile robot in an unknown environment with cluttered obstacles. Ultrasonic sensors are used to capture the environmental information around the mobile robot. A training data set required to train the ANFIS controller has been obtained by designing a fuzzy logic based navigation controller. additive white Gaussian noise has been added to the sensor readings and fed to the trained ANFIS controller during mobile robot navigation, to account for the effect of environmental noise on sensor readings. The robustness of the proposed navigation controller has been evaluated by navigating the mobile robot in three different environments. The performance of the proposed controller has been verified by comparing the travelled path length/efficiency and bending energy obtained by the proposed method with reference mobile robot navigation controllers, such as neural network, fuzzy logic, and ANFIS. Simulation results presented in this paper show that the proposed controller has better performance compared with reference controllers and can successfully navigate in different environments without any collision with obstacles.

基于自适应网络模糊推理系统的移动机器人导航控制器

摘要:在障碍物高度杂乱的未知环境中自主导航是移动机器人研究的一个基本问题。提出一种基于自适应网络模糊推理系统(ANFIS)的差分驱动移动机器人导航控制器,用超声波传感器捕捉移动机器人周围的环境信息。设计了一个基于模糊逻辑的导航控制器,用于获取数据集训练ANFIS控制器。在移动机器人导航过程中,考虑到环境噪声对传感器读数的影响,将加性高斯白噪声添加到传感器读数中并反馈给已训练的ANFIS控制器。在3种不同环境下对移动机器人进行导航,评价该导航控制器的鲁棒性。通过与已有移动机器人导航控制器(如神经网络、模糊逻辑)比较行程长度、行程效率、弯曲能量,验证ANFIS控制器性能。仿真结果表明,与其他控制器相比,ANFIS控制器具有更好性能,能够在不同环境中顺利导航且不与障碍物发生碰撞。

关键词:自适应网络模糊推理系统;加性高斯白噪声;自主导航;移动机器人

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Algabri M, Mathkour H, Ramdane H, et al., 2015. Comparative study of soft computing techniques for mobile robot navigation in an unknown environment. Comput Human Behav, 50:42-56.

[2]Ali AH, Shamshirband S, Anuar NB, et al., 2014. DFCL: dynamic fuzzy logic controller for intrusion detection. Facta Univ Ser Mech Eng, 12(2):183-193.

[3]Al-Sagban, Dhaouadi R, 2016. Neural based autonomous navigation of wheeled mobile robots. J Autom Mob Robot Intell Syst, 10(2):64-72.

[4]Badii A, Khan A, Raval R, et al., 2014. Situation assessment through multi-modal sensing of dynamic environments to support cognitive robot control. Facta Univ Ser Mech Eng, 12(3):251-260.

[5]Faisal M, Hedjar R, Al Sulaiman M, et al., 2013. Fuzzy logic navigation and obstacle avoidance by a mobile robot in an unknown dynamic environment. Int J Adv Robot Syst, 10:37.

[6]Gudarzi M, 2016. Reliable robust controller for half-car active suspension systems based on human-body dynamics. Facta Univ Ser Mech Eng, 14(2):121-134.

[7]Guo Y, Qu ZH, Wang J, 2003. A new performance-based motion planner for nonholonomic mobile robots. Proc 3rd Performance Metrics for Intelligent Systems Workshop, p.1-8.

[8]Jang JSR, 1993. ANFIS: adaptive-network-based fuzzy inference system. IEEE Trans Syst Man Cybern, 23(3):665- 685.

[9]Kim CJ, Chwa D, 2015. Obstacle avoidance method for wheeled mobile robots using interval type-2 fuzzy neural network. IEEE Trans Fuzzy Syst, 23(3):677-687.

[10]Kundu S, Parhi DR, Deepak BBVL, 2012. Fuzzy-neuro based navigational strategy for mobile robot. Int J Sci Eng Res, 3(6):97-102.

[11]Kyrarini M, Slavnić S, Ristić-Durrant D, 2014. Fuzzy controller for the control of the mobile platform of the CORBYS robotic gait rehabilitation system. Facta Univ Ser Mech Eng, 12(3):223-234.

[12]Li X, Choi BJ, 2013. Design of obstacle avoidance system for mobile robot using fuzzy logic systems. Int J Smart Home, 7(3):321-328.

[13]Luo CM, Gao JY, Li XD, et al., 2014. Sensor-based autonomous robot navigation under unknown environments with grid map representation. Proc IEEE Symp on Swarm Intelligence, p.1-7.

[14]Mohanty PK, Parhi DR, 2014. A new intelligent motion planning for mobile robot navigation using multiple adaptive neuro-fuzzy inference system. Appl Math Inform Sci, 8(5): 2527-2535.

[15]Muñoz ND, Valencia JA, Londono N, 2007. Evaluation of navigation of an autonomous mobile robot. Proc Workshop on Performance Metrics for Intelligent Systems, p.15-21.

[16]Oveisi A, Nestorović T, 2014. Robust mixed H2/H active vibration controller in attenuation of smart beam. Facta Univ Ser Mech Eng, 12(3):235-249.

[17]Petković D, Gocić M, Shamshirband S, 2016. Adaptive neuro- fuzzy computing technique for precipitation estimation. Facta Univ Ser Mech Eng, 14(2):209-218.

[18]Rosenblatt J, 1997. DAMN: a Distributed Architecture for Mobile Navigation. PhD Thesis, the Robotics Institute, Carnegie Mellon University, Pittsburgh, USA.

[19]Rusu CG, Birou IT, 2010. Obstacle avoidance fuzzy system for mobile robot with IR sensors. Proc 10th Int Conf on Development and Application Systems, p.22.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE