CLC number: TP242
On-line Access: 2017-10-25
Received: 2017-05-03
Revision Accepted: 2017-08-23
Crosschecked: 2017-09-27
Cited: 0
Clicked: 6342
Chun-lin Zhou, Bo-xing Wang, Hong-xiang Zhou, Jing-lan Li, Rong Xiong. Dynamic modeling of a wave glider[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(9): 1295-1304.
@article{title="Dynamic modeling of a wave glider",
author="Chun-lin Zhou, Bo-xing Wang, Hong-xiang Zhou, Jing-lan Li, Rong Xiong",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="18",
number="9",
pages="1295-1304",
year="2017",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.1700294"
}
%0 Journal Article
%T Dynamic modeling of a wave glider
%A Chun-lin Zhou
%A Bo-xing Wang
%A Hong-xiang Zhou
%A Jing-lan Li
%A Rong Xiong
%J Frontiers of Information Technology & Electronic Engineering
%V 18
%N 9
%P 1295-1304
%@ 2095-9184
%D 2017
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.1700294
TY - JOUR
T1 - Dynamic modeling of a wave glider
A1 - Chun-lin Zhou
A1 - Bo-xing Wang
A1 - Hong-xiang Zhou
A1 - Jing-lan Li
A1 - Rong Xiong
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 18
IS - 9
SP - 1295
EP - 1304
%@ 2095-9184
Y1 - 2017
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.1700294
Abstract: We propose a method to establish a dynamic model for a wave glider, a wave-propelled sea surface vehicle that can make use of wave energy to obtain thrust. The vehicle, composed of a surface float and a submerged glider in sea water, is regarded as a two-particle system. Kane’s equations are used to establish the dynamic model. To verify the model, the design of a testing prototype is proposed and pool trials are conducted. The speeds of the vehicle under different sea conditions can be computed using the model, which is verified by pool trials. The optimal structure parameters useful for vehicle designs can also be obtained from the model. We illustrate how to build an analytical dynamics model for the wave glider, which is a crucial basis for the vehicle’s motion control. The dynamics model also provides foundations for an off-line simulation of vehicle performance and the optimization of its mechanical designs.
[1]Caiti, A., Calabró, V., Grammatico, S., et al., 2011. Lagrangian modeling of the underwater wave glider. MTS/IEEE Oceans, p.1-6.
[2]Cameron, S., 1994. Obstacle avoidance and path planning. Ind. Robot, 21(5):9-14.
[3]Carragher, P., Hine, G., Legh-Smith, P., et al., 2013. A new platform for offshore exploration and production. Oilfield Rev., 25(4):40-50.%
[4]Cong, B., Cui, H.L., Liu, Z., 2009. Modeling and virtual simulation in random ocean waves. J. Xi’san Technol. Univ., 29(5):475-478 (in Chinese).
[5]Daugherty, R.L., Franzini, J.B., 1997. Fluid Mechanics with Engineering Applications. McGraw-Hill, New York, p.192-198.
[6]Hine, R., Willcox, S., Hine, G., et al., 2009. The wave glider: a wave-powered autonomous marine vehicle. MTS/IEEE Oceans, p.1-6.
[7]Kraus, N., Bingham, B., 2011. Estimation of wave glider dynamics for precise positioning. MTS/IEEE Oceans, p.1-9.
[8]Liu, J.Y., Li, Y.H., Yi, H., et al., 2011. The modeling and analysis of wave powering surface vehicle. MTS/IEEE Oceans, p.1-6.
[9]Lolla, T., Ueckermann, M.P., Yiv git, K., et al., 2012. Path planning in time dependent flow fields using level set methods. IEEE Int. Conf. on Robotics and Automation, p.166-173.
[10]Ma, X.F., Xu, X.R., Li, D.G., 1988. A recursive algorithm of robot dynamics based on the Kane’ss dynamical equation. J. Beijing Univ. Iron Steel Technol., 10(2):198-208 (in Chinese).
[11]Manley, J., Hine, G., 2016. Unmanned surface vessels (USVs) as tow platforms: wave glider experience and results. MTS/IEEE Oceans, p.1-5
[12]Manley, J., Willcox, S., 2010. The wave glider: a new concept for deploying ocean instrumentation. IEEE Instrum. Meas. Mag., 13(6):8-13.
[13]Ngo, P., Al-Sabban, W., Thomas, J., et al., 2013. An analysis of regression models for predicting the speed of a wave glider autonomous surface vehicle. Proc. Australasian Conf. on Robotics and Automation, p.1-10.
[14]Ngo, P., Das, J., Ogle, J., et al., 2014. Predicting the speed of a wave glider autonomous surface vehicle from wave model data. IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, p.2250-2256.
[15]Smith, R.N., Das, J., Hine, G., et al., 2011. Predicting wave glider speed from environmental measurements. MTS/IEEE Oceans, p.1-8.
[16]Song, H., Zhang, J.H., Yang, P., et al., 2016. Modeling of a dynamic dual-input dual-output fast steering mirror linebreak newpage system. Front. Inform. Technol. Electron. Eng., in press.
[17]Tarn, T.J., Shoults, G.A., Yang, S.P., 1996. A dynamic model of an underwater vehicle with a robotic manipulator using Kane’ss method. Auton. Robots, 3(2-3):269-283.
[18]Wiggins, S., Manley, J., Brager, E., et al., 2010. Monitoring marine mammal acoustics using wave glider. MTS/IEEE Oceans, p.1-4.
[19]Zhang, Y.W., Kieft, B., Rueda, C., et al., 2016. Autonomous front tracking by a wave glider. MTS/IEEE Oceans, p.1-4.
[20]Zhou, C.L., Low, K.H., 2014. On-line optimization of biomimetic undulatory swimming by an experiment-based approach. J. Bion. Eng., 11(2):213-225.
Open peer comments: Debate/Discuss/Question/Opinion
<1>