Full Text:   <1975>

CLC number: TN92

On-line Access: 2018-05-07

Received: 2018-01-19

Revision Accepted: 2018-03-09

Crosschecked: 2018-03-25

Cited: 0

Clicked: 4955

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Zhi-guo Ding

http://orcid.org/0000-0001-5280-384X

-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering  2018 Vol.19 No.3 P.322-339

http://doi.org/10.1631/FITEE.1800051


Embracing non-orthogonal multiple access in future wireless networks


Author(s):  Zhi-guo Ding, Mai Xu, Yan Chen, Mu-gen Peng, H. Vincent Poor

Affiliation(s):  Department of Electrical Engineering, Princeton University, Princeton NJ 08544, USA; more

Corresponding email(s):   z.ding@lancaster.ac.uk, MaiXu@buaa.edu.cn, bigbird.chenyan@huawei.com, pmg@bupt.edu.cn, poor@princeton.edu

Key Words:  Non-orthogonal multiple access (NOMA), Wireless caching, Multiple-input multiple-output (MIMO) NOMA, Cooperative NOMA, Millimeter-wave networks, Visible light communications (VLC)


Zhi-guo Ding, Mai Xu, Yan Chen, Mu-gen Peng, H. Vincent Poor. Embracing non-orthogonal multiple access in future wireless networks[J]. Frontiers of Information Technology & Electronic Engineering, 2018, 19(3): 322-339.

@article{title="Embracing non-orthogonal multiple access in future wireless networks",
author="Zhi-guo Ding, Mai Xu, Yan Chen, Mu-gen Peng, H. Vincent Poor",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="19",
number="3",
pages="322-339",
year="2018",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.1800051"
}

%0 Journal Article
%T Embracing non-orthogonal multiple access in future wireless networks
%A Zhi-guo Ding
%A Mai Xu
%A Yan Chen
%A Mu-gen Peng
%A H. Vincent Poor
%J Frontiers of Information Technology & Electronic Engineering
%V 19
%N 3
%P 322-339
%@ 2095-9184
%D 2018
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.1800051

TY - JOUR
T1 - Embracing non-orthogonal multiple access in future wireless networks
A1 - Zhi-guo Ding
A1 - Mai Xu
A1 - Yan Chen
A1 - Mu-gen Peng
A1 - H. Vincent Poor
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 19
IS - 3
SP - 322
EP - 339
%@ 2095-9184
Y1 - 2018
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.1800051


Abstract: 
This paper provides a comprehensive survey of the impact of the emerging communication technique, non-orthogonal multiple access (NOMA), on future wireless networks. Particularly, how the NOMA principle affects the design of the generation multiple access techniques is introduced first. Then the applications of NOMA to other advanced communication techniques, such as wireless caching, multiple-input multiple-output techniques, millimeter-wave communications, and cooperative relaying, are discussed. The impact of NOMA on communication systems beyond cellular networks is also illustrated, through the examples of digital TV, satellite communications, vehicular networks, and visible light communications. Finally, the study is concluded with a discussion of important research challenges and promising future directions in NOMA.

未来无线网络的非正交多址接入技术

概要:本文就新兴通信技术--非正交多址接入(non-orthogonal multiple access, NOMA)—对未来无线网络的影响进行了全面综述。具体地,介绍了NOMA原理对下一代多址接入技术设计的影响。讨论了NOMA在其他先进通信技术上的应用,包括无线缓存、多入多出技术、毫米波通信以及协同中继。阐述了NOMA对蜂窝网络之外通信系统的影响,例如数字电视、卫星通信、车联网及可见光通信。最后,讨论并总结了NOMA的主要研究挑战及未来发展方向。

关键词:非正交多址;多天线技术;毫米波;混合多址;无线缓存;协作非正交多址;可见光通信

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Alkhateeb A, Nam YH, Zhang J, et al., 2016. Massive MIMO combining with switches. IEEE Wirel Commun Lett, 5(3):232-235.

[2]Bastug E, Bennis M, Debbah M, 2014. Living on the edge:the role of proactive caching in 5G wireless networks. IEEE Commun Mag, 52(8):82-89.

[3]Boyd S, Vandenberghe L, 2004. Convex Optimization. Cambridge University Press, New York, USA.

[4]Cai D, Fan P, Lei X, et al., 2016. Multi-dimensional SCMA codebook design based on constellation rotation and interleaving. IEEE 83rd Vehicular Technology Conf, p.1-5.

[5]Caus M, Vázquez MA, Pérez-Neira A, 2016. NOMA and interference limited satellite scenarios. 50th Asilomar Conf on Signals, Systems and Computers, p.497-501.

[6]Chen S, Ren B, Gao Q, et al., 2017a. Pattern division multiple access (PDMA)—a novel non-orthogonal multiple access for 5G radio networks. IEEE Trans Veh Technol, 66(4):3185-3196.

[7]Chen S, Hu J, Shi Y, et al., 2017b. Vehicle-to-everything (V2X) services supported by LTE-based systems and 5G. IEEE Commun Stand Mag, 1(2):70-76.

[8]Chen Y, Wang L, Ai Y, et al., 2017. Performance analysis of NOMA-SM in vehicle-to-vehicle massive MIMO channels. IEEE J Sel Areas Commun, 35(12):2653-2666.

[9]Chen Z, Kountouris M, 2016. D2D caching vs. small cell caching:where to cache content in a wireless network? IEEE 17th Int Workshop on Signal Processing Advances in Wireless Communications, p.1-6.

[10]Chen Z, Ding Z, Dai X, et al., 2016a. On the application of quasi-degradation to MISO-NOMA downlink. IEEE Trans Signal Process, 64(23):6174-6189.

[11]Chen Z, Ding Z, Xu P, et al., 2016b. Optimal precoding for a QoS optimization problem in two-user MISO-NOMA downlink. IEEE Commun Lett, 20(6):1263-1266.

[12]Choi J, 2016a. Power allocation for max-sum rate and max-min rate proportional fairness in NOMA. IEEE Commun Lett, 20(10):2055-2058.

[13]Choi J, 2016b. On the power allocation for MIMO-NOMA systems with layered transmissions. IEEE Trans Wirel Commun, 15(5):3226-3237.

[14]Cover TM, Thomas JA, 2006. Elements of Information Theory. John Wiley and Sons, New Jersey, USA.

[15]Di B, Song L, Li Y, et al., 2017. Non-orthogonal multiple access for high-reliable and low-latency V2X communications in 5G systems. IEEE J Sel Areas Commun, 35(10):2383-2397.

[16]Diamantoulakis PD, Pappi KN, Ding Z, et al., 2016. Wireless-powered communications with non-orthogonal multiple access. IEEE Trans Wirel Commun, 15(12):8422-8436.

[17]Ding Z, Poor HV, 2016. Design of massive-MIMO-NOMA with limited feedback. IEEE Signal Process Lett, 23(5):629-633.

[18]Ding Z, Yang Z, Fan P, et al., 2014. On the performance of non-orthogonal multiple access in 5G systems with randomly deployed users. IEEE Signal Process Lett, 21(12):1501-1505.

[19]Ding Z, Peng M, Poor HV, 2015. Cooperative non-orthogonal multiple access in 5G systems. IEEE Commun Lett, 19(8):1462-1465.

[20]Ding Z, Adachi F, Poor HV, 2016a. The application of MIMO to non-orthogonal multiple access. IEEE Trans Wirel Commun, 15(1):537-552.

[21]Ding Z, Schober R, Poor HV, 2016b. A general MIMO framework for NOMA downlink and uplink transmissions based on signal alignment. IEEE Trans Wirel Commun, 15(6):4438-4454.

[22]Ding Z, Fan P, Poor HV, 2016c. Impact of user pairing on 5G non-orthogonal multiple access downlink transmissions. IEEE Trans Veh Technol, 65(8):6010-6023.

[24]Ding Z, Dai H, Poor HV, 2016e. Relay selection for cooperative NOMA. IEEE Wirel Commun Lett, 5(4):416-419.

[25]Ding Z, Liu Y, Choi J, et al., 2017a. Application of non-orthogonal multiple access in LTE and 5G networks. IEEE Commun Mag, 55(2):185-191.

[26]Ding Z, Fan P, Karagiannidis G, et al., 2017b. NOMA assisted wireless caching:strategies and performance analysis. https://arxiv.org/abs/1709.06951

[27]Ding Z, Dai L, Schober R, et al., 2017c. NOMA meets finite resolution analog beamforming in massive MIMO and millimeter-wave networks. IEEE Commun Lett, 21(8):1879-1882.

[28]Ding Z, Fan P, Poor HV, 2017d. Random beamforming in millimeter-wave NOMA networks. IEEE Access, 5:7667-7681.

[29]Ding Z, Zhao Z, Peng M, et al., 2017e. On the spectral efficiency and security enhancements of NOMA assisted multicast-unicast streaming. IEEE Trans Commun, 65(7):3151-3163.

[30]Ding Z, Lei X, Karagiannidis GK, et al., 2017f. A survey on non-orthogonal multiple access for 5G networks:research challenges and future trends. IEEE J Sel Areas Commun, 35(10):2181-2195.

[31]Ding Z, Fan P, Poor HV, 2018. On the coexistence between full-duplex and NOMA. IEEE Wirel Commun Lett, in press.

[32]Elbamby MS, Bennis M, Saad W, et al., 2017. Resource optimization and power allocation in full duplex non-orthogonal multiple access (FD-NOMA) networks. IEEE J Sel Areas Commun, 35(12):2860-2873.

[33]Fay L, Michael L, Gómez-Barquero D, et al., 2016. An overview of the ATSC 3.0 physical layer specification. IEEE Trans Broadcast, 62(1):159-171.

[34]Foschini GJ, Gans MJ, 1998. On limits of wireless communication in a fading environment when using multiple antennas. Wirel Pers Commun, 6(3):311-335.

[35]Gao X, Dai L, Sun Y, et al., 2017. Machine learning inspired energy-efficient hybrid precoding for mmWave massive MIMO systems. IEEE Int Conf on Communications, p.1-6..

[36]Golrezaei N, Molisch AF, Dimakis AG, et al., 2013. Femtocaching and device-to-device collaboration:a new architecture for wireless video distribution. IEEE Commun Mag, 51(4):142-149.

[37]Hanif MF, Ding Z, Ratnarajah T, et al., 2016. A minorization-maximization method for optimizing sum rate in non-orthogonal multiple access systems. IEEE Trans Signal Process, 64(1):76-88.

[38]Heath RW, González-Prelcic N, Rangan S, et al., 2016. An overview of signal processing techniques for millimeter wave MIMO systems. IEEE J Sel Topics Signal Process, 10(3):436-453.

[39]Ho IWH, Leung KK, Polak JW, 2011. Stochastic model and connectivity dynamics for VANETs in signalized road systems. IEEE/ACM Trans Network, 19(1):195-208.

[40]Huawei Inc., 2015. 5G:a Techology Vision. http://www.huawei.com/en/about-huawei/publications/winwin-magazine/19/HW_329327

[41]Kim JB, Lee IH, 2015. Non-orthogonal multiple access in coordinated direct and relay transmission. IEEE Commun Lett, 19(11):2037-2040.

[42]Komine T, Nakagawa M, 2004. Fundamental analysis for visible-light communication system using LED lights. IEEE Trans Consum Electron, 50(1):100-107.

[43]Kulkarni MN, Ghosh A, Andrews JG, 2016. A comparison of MIMO techniques in downlink millimeter wave cellular networks with hybrid beamforming. IEEE Trans Commun, 64(5):1952-1967.

[44]Lee J, Quek TQS, 2017. Hybrid full-/half-duplex system analysis in heterogeneous wireless network. IEEE Trans Wirel Commun, 14(5):2883-2895.

[45]Liu L, Zhang R, Chua KC, 2013. Wireless information transfer with opportunistic energy harvesting. IEEE Trans Wirel Commun, 12(1):288-300.

[46]Liu Y, Ding Z, Elkashlan M, et al., 2016. Cooperative non-orthogonal multiple access with simultaneous wireless information and power transfer. IEEE J Sel Areas Commun, 34(4):938-953.

[47]Luo S, Teh KC, 2017. Adaptive transmission for cooperative NOMA system with buffer-aided relaying. IEEE Commun Lett, 21(4):937-940.

[48]Lv L, Ni Q, Ding Z, et al., 2017. Application of non-orthogonal multiple access in cooperative spectrum-sharing networks over Nakagami-m fading channels. IEEE Trans Veh Technol, 66(6):5506-5511.

[49]Maddah-Ali MA, Niesen U, 2014. Fundamental limits of caching. IEEE Trans Inform Theory, 60(5):2856-2867.

[50]Marshoud H, Kapinas VM, Karagiannidis GK, et al., 2016. Non-orthogonal multiple access for visible light communications. IEEE Photon Technol Lett, 28(1):51-54.

[51]Mitra R, Bhatia V, 2017. Precoded Chebyshev-NLMS-based pre-distorter for nonlinear LED compensation in NOMA-VLC. IEEE Trans Commun, 65(11):4845-4856.

[52]Molina-Masegosa R, Gozalvez J, 2017. LTE-V for sidelink 5G V2X vehicular communications:a new 5G technology for short-range vehicle-to-everything communications. IEEE Veh Technol Mag, 12(4):30-39.

[53]Nikopour H, Baligh H, 2013. Sparse code multiple access. IEEE 24th Int Symp on Personal Indoor and Mobile Radio Communications, p.332-336.

[54]Nonaka N, Benjebbour A, Higuchi K, 2014. System-level throughput of NOMA using intra-beam superposition coding and SIC in MIMO downlink when channel estimation error exists. IEEE Int Conf on Communication Systems, p.202-206.

[55]NTT Docomo Inc., 2014. 5G Radio Access:Requirements, Concepts and Technologies.

[56]NTT Docomo Inc., 2017. World's First Successful 5G Trial Using Smartphone-Sized NOMA Chipset-Embedded Device to Increase Spectral Efficiency. https://www.nttdocomo.co.jp/english/info/media_center/pr/2017/1102_02.html

[57]Pan G, Ye J, Ding Z, 2017a. Secure hybrid VLC-RF systems with light energy harvesting. IEEE Trans Commun, 65(10):4348-4359.

[58]Pan G, Ye J, Ding Z, 2017b. On secure VLC systems with spatially random terminals. IEEE Commun Lett, 21(3):492-495.

[59]Proakis J, 2000. Digital Communications. McGraw-Hill, New York, USA.

[60]Saito Y, Benjebbour A, Kishiyama Y, et al., 2013. System-level performance evaluation of downlink non-orthogonal multiple access (NOMA). IEEE 24th Int Symp on Personal Indoor and Mobile Radio Communications, p.611-615.

[61]Sun Y, Ng DWK, Ding Z, et al., 2017. Optimal joint power and subcarrier allocation for full-duplex multicarrier non-orthogonal multiple access systems. IEEE Trans Commun, 65(3):1077-1091.

[62]Taherzadeh M, Nikopour H, Bayesteh A, et al., 2014. SCMA codebook design. IEEE 80th Vehicular Technology Conf, p.1-5.

[63]techUK, 2015. 5G Innovation Opportunities—a Discussion Paper.

[64]Verdú S, 1998. Multiuser Detection. Cambridge University Press, Cambridge, UK.

[65]Wei Z, Yuan J, Ng D, et al., 2016. A survey of downlink non-orthogonal multiple access for 5G wireless communication networks. ZTE Commun, 14(4):17-25.

[66]Wei Z, Dai L, Ng DWK, et al., 2017. Performance analysis of a hybrid downlink-uplink cooperative NOMA scheme. IEEE 85th Vehicular Technology Conf, p.1-7.

[67]Xu D, Ren P, Du Q, et al., 2017. Combat eavesdropping by full-duplex technology and signal transformation in non-orthogonal multiple access transmission. IEEE Int Conf on Communications, p.1-6.

[68]Xu P, Ding Z, Dai X, et al., 2015. A new evaluation criterion for non-orthogonal multiple access in 5G software defined networks. IEEE Access, 3:1633-1639.

[69]Xu P, Yuan Y, Ding Z, et al., 2016. On the outage performance of non-orthogonal multiple access with 1-bit feedback. IEEE Trans Wirel Commun, 15(10):6716-6730.

[70]Xu X, Tao M, 2017. Modeling, analysis, and optimization of coded caching in small-cell networks. IEEE Trans Commun, 65(8):3415-3428.

[71]Yakou K, Higuchi K, 2015. Downlink NOMA with SIC using unified user grouping for non-orthogonal user multiplexing and decoding order. Int Symp on Intelligent Signal Processing and Communication Systems, p.508-513.

[72]Yang Z, Ding Z, Fan P, et al., 2016a. A general power allocation scheme to guarantee quality of service in downlink and uplink NOMA systems. IEEE Trans Wirel Commun, 15(11):7244-7257.

[73]Yang Z, Cui J, Lei X, et al., 2016b. Impact of factor graph on average sum rate for uplink sparse code multiple access systems. IEEE Access, 4:6585-6590.

[74]Yang Z, Ding Z, Fan P, et al., 2016c. On the performance of non-orthogonal multiple access systems with partial channel information. IEEE Trans Commun, 64(2):654-667.

[75]Yang Z, Ding Z, Wu Y, et al., 2017. Novel relay selection strategies for cooperative NOMA. IEEE Trans Veh Technol, 66(11):10114-10123.

[76]Yin L, Popoola WO, Wu X, et al., 2016. Performance evaluation of non-orthogonal multiple access in visible light communication. IEEE Trans Commun, 64(12):5162-5175.

[77]Yu L, Fan P, Ma Z, et al., 2016. An optimized design of irregular SCMA codebook based on rotated angles and EXIT chart. IEEE 84th Vehicular Technology Conf, p.1-5.

[78]Yu L, Fan P, Lei X, et al., 2017. BER analysis of SCMA systems with codebooks based on star-QAM signaling constellations. IEEE Commun Lett, 21(9):1925-1928.

[79]Zeng M, Yadav A, Dobre OA, et al., 2017. Capacity comparison between MIMO-NOMA and MIMO-OMA with multiple users in a cluster. IEEE J Sel Areas Commun, 35(10):2413-2424.

[80]Zhang D, Liu Y, Ding Z, et al., 2017. Performance analysis of non-regenerative massive-MIMO-NOMA relay systems for 5G. IEEE Trans Commun, 65(11):4777-4790.

[81]Zhang L, Li W, Wu Y, et al., 2016. Layered-division-multiplexing:theory and practice. IEEE Trans Broadcast, 62(1):216-232.

[82]Zhang L, Liu J, Xiao M, et al., 2017. Performance analysis and optimization in downlink NOMA systems with cooperative full-duplex relaying. IEEE J Sel Areas Commun, 35(10):2398-2412.

[83]Zhang X, Gao Q, Gong C, et al., 2017. User grouping and power allocation for NOMA visible light communication multi-cell networks. IEEE Commun Lett, 21(4):777-780.

[84]Zhang Y, Wang HM, Yang Q, et al., 2016. Secrecy sum rate maximization in non-orthogonal multiple access. IEEE Commun Lett, 20(5):930-933.

[85]Zhang Y, Wang HM, Zheng TX, et al., 2017. Energy-efficient transmission design in non-orthogonal multiple access. IEEE Trans Veh Technol, 66(3):2852-2857.

[86]Zhang Z, Ma Z, Xiao M, et al., 2017a. Full-duplex device-to-device aided cooperative non-orthogonal multiple access. IEEE Trans Veh Technol, 66(5):4467-4471.

[87]Zhang Z, Ma Z, Xiao Y, et al., 2017b. Non-orthogonal multiple access for cooperative multicast millimeter wave wireless networks. IEEE J Sel Areas Commun, 35(8):1794-1808.

[88]Zhong C, Zhang Z, 2016. Non-orthogonal multiple access with cooperative full-duplex relaying. IEEE Commun Lett, 20(12):2478-2481.

[89]Zhou GT, Viberg M, McKelvey T, 2003. A first-order statistical method for channel estimation. IEEE Signal Process Lett, 10(3):57-60.

[90]Zhu X, Jiang C, Kuang L, et al., 2017. Non-orthogonal multiple access based integrated terrestrial-satellite networks. IEEE J Sel Areas Commun, 35(10):2253-2267.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE