Full Text:   <2285>

Summary:  <1382>

CLC number: TN929.5

On-line Access: 2020-01-13

Received: 2019-08-08

Revision Accepted: 2019-12-12

Crosschecked: 2019-12-12

Cited: 0

Clicked: 5141

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Fei-yan Tian

http://orcid.org/0000-0001-8242-2802

Xiao-ming Chen

http://orcid.org/0000-0002-1818-2135

-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering  2019 Vol.20 No.12 P.1665-1697

http://doi.org/10.1631/FITEE.1900405


Multiple-antenna techniques in nonorthogonal multiple access: a review


Author(s):  Fei-yan Tian, Xiao-ming Chen

Affiliation(s):  College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310027, China

Corresponding email(s):   tian_feiyan@zju.edu.cn, hen_xiaoming@zju.edu.cn

Key Words:  Nonorthogonal multiple access, Multiple-antenna technique, B5G, Internet of Things


Fei-yan Tian, Xiao-ming Chen. Multiple-antenna techniques in nonorthogonal multiple access: a review[J]. Frontiers of Information Technology & Electronic Engineering, 2019, 20(12): 1665-1697.

@article{title="Multiple-antenna techniques in nonorthogonal multiple access: a review",
author="Fei-yan Tian, Xiao-ming Chen",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="20",
number="12",
pages="1665-1697",
year="2019",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.1900405"
}

%0 Journal Article
%T Multiple-antenna techniques in nonorthogonal multiple access: a review
%A Fei-yan Tian
%A Xiao-ming Chen
%J Frontiers of Information Technology & Electronic Engineering
%V 20
%N 12
%P 1665-1697
%@ 2095-9184
%D 2019
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.1900405

TY - JOUR
T1 - Multiple-antenna techniques in nonorthogonal multiple access: a review
A1 - Fei-yan Tian
A1 - Xiao-ming Chen
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 20
IS - 12
SP - 1665
EP - 1697
%@ 2095-9184
Y1 - 2019
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.1900405


Abstract: 
As a promising physical layer technique, nonorthogonal multiple access (NOMA) can admit multiple users over the same space-time resource block, and thus improve the spectral efficiency and increase the number of access users. Specifically, NOMA provides a feasible solution to massive internet of Things (IoT) in 5G and beyond-5G wireless networks over a limited radio spectrum. However, severe co-channel interference and high implementation complexity hinder its application in practical systems. To solve these problems, multiple-antenna techniques have been widely used in NOMA systems by exploiting the benefits of spatial degrees of freedom. This study provides a comprehensive review of various multiple-antenna techniques in NOMA systems, with an emphasis on spatial interference cancellation and complexity reduction. In particular, we provide a detailed investigation on multiple-antenna techniques in two-user, multiuser, massive connectivity, and heterogeneous NOMA systems. Finally, future research directions and challenges are identified.

多天线非正交多址接入技术:综述

摘要:作为一种前沿的物理层技术,非正交多址接入技术允许多用户共享同一时空资源,因此增加了可接入用户数量,从而改善频谱效率。在第5代及未来无线通信网络中,非正交多址接入技术为实现大规模万物互联提供了可行方案。然而,严重的共道干扰和较高的实施复杂度阻碍了其在实际系统中的应用。为解决这些问题,多天线技术凭借其在空间自由度上的优势,已被广泛应用于非正交多址接入系统。本文针对多天线技术在非正交多址接入系统中各种各样的应用提供了一个全面综述,主要强调其在消除空间干扰和降低实施复杂度上的优势。特别地,详细调查了多天线技术在两用户、多用户、大规模连接和异构非正交多址接入系统中的应用。最后,预测了未来相关研究方向与挑战。

关键词:非正交多址接入;多天线技术;B5G;物联网

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Alavi F, Cumanan K, Ding ZG, et al., 2017. Robust beamforming techniques for non-orthogonal multiple access systems with bounded channel uncertainties. IEEE Commun Lett, 21(9):2033-2036.

[2]Ali E, Ismail M, Nordin R, et al., 2017. Beamforming techniques for massive MIMO systems in 5G: overview, classification, and trends for future research. Front Inform Technol Electron Eng, 18(6):753-772.

[3]Ali MS, Tabassum H, Hossain E, 2016a. Dynamic user clustering and power allocation for uplink and downlink non-orthogonal multiple access (NOMA) systems. IEEE Access, 4:6325-6343.

[4]Ali MS, Hossain E, Kim DI, 2016b. Non-orthogonal multiple access (NOMA) for downlink multiuser MIMO systems: user clustering, beamforming, and power allocation. IEEE Access, 5:565-577.

[5]Amin SH, Mehana AH, Soliman SS, et al., 2018. Power allocation for maximum MIMO-NOMA system user-rate. Proc Globecom Workshops, p.1-6.

[6]Arzykulov S, Tsiftsis TA, Nauryzbayev G, et al., 2019. Outage performance of cooperative underlay CR-NOMA with imperfect CSI. IEEE Commun Lett, 23(1):176-179.

[7]Bai L, Zhu L, Yu Q, et al., 2019. Transmit power minimization for vector-pertubation based NOMA systems: a sub-optimal beamforming approach. IEEE Trans Wirel Commun, 18(5):2679-2692.

[8]Cai W, Lv G, Jin Y, 2017. Half-ZF beamforming scheme for downlink two-user multiple input single output-based non-orthogonal multiple access systems. IET Commun, 11(10):1633-1640.

[9]Catarinucci L, de Donno D, Mainetti L, 2015. An IoT-aware architecture for smart healthcare systems. IEEE Int Things J, 2(6):515-526.

[10]Celik A, Al-Qahtani FS, Radaydeh RM, et al., 2017. Cluster formation and joint power-bandwidth allocation for imperfect NOMA in DL-HetNets. Proc Global Communications Conf, p.1-6.

[11]Celik A, Tsai MC, Radaydeh RM, et al., 2019. Distributed cluster formation and power-bandwidth allocation for imperfect NOMA in DL-HetNets. IEEE Trans Commun, 67(2):1677-1692.

[12]Chen C, Cai WB, Cheng X, et al., 2017. Low complexity beamforming and user selection schemes for 5G MIMO-NOMA systems. IEEE J Sel Areas Commun, 35(12):2708-2722.

[13]Chen J, Chen XM, Gerstacker WH, et al., 2016. Resource allocation for a massive MIMO relay aided secure communication. IEEE Trans Inform Forens Secur, 11(8):1700-1711.

[14]Chen SZ, Kang SL, 2018. A tutorial on 5G and the progress in China. Front Inform Technol Electron Eng, 19(3):309-321.

[15]Chen X, 2019. Massive Access for Cellular Internet of Things: Theory and Technique. Springer Press, Germany.

[16]Chen X, Chen HH, 2014. Physical layer security in multi-cell MISO downlink with incomplete CSI—a unified secrecy performance analysis. IEEE Trans Signal Process, 62(23):6286-6297.

[17]Chen X, Yuen C, 2014. Performance analysis and optimization for interference alignment over MIMO interference channels with limited feedback. IEEE Trans Signal Process, 62(7):1785-1795.

[18]Chen X, Zhang Y, 2017. Mode selection in MU-MIMO downlink networks: a physical layer security perspective. IEEE Syst J, 11(2):1128-1136.

[19]Chen X, Gong FK, Li G, et al., 2018. User pairing and pairing scheduling in massive MIMO-NOMA systems. IEEE Commun Lett, 22(4):788-791.

[20]Chen XM, Chen HH, 2013. Interference-aware resource control in multi-antenna cognitive ad hoc networks with heterogeneous delay constraints. IEEE Commun Lett, 17(6):1184-1187.

[21]Chen XM, Jia RD, 2018. Exploiting rateless coding for massive access. IEEE Trans Veh Technol, 67(11):11253-11257.

[22]Chen XM, Yuen C, 2013. Efficient resource allocation in rateless coded MU-MIMO cognitive radio network with QoS provisioning and limited feedback. IEEE Trans Veh Technol, 62(1):395-399.

[23]Chen XM, Zhang ZY, 2010. Exploiting channel angular domain information for precoder design in distributed antenna system. IEEE Trans Signal Process, 58(11):5791-5801.

[24]Chen XM, Zhang ZY, Chen HH, 2010. On distributed antenna system with limited feedback precoding-opportunities and challenges. IEEE Wirel Commun, 17(2):80-88.

[25]Chen XM, Zhang ZY, Chen SL, et al., 2012. Adaptive mode selection for multiuser MIMO downlink employing rateless codes with QoS provisioning. IEEE Trans Wirel Commun, 11(2):790-799.

[26]Chen XM, Wang XM, Chen XF, 2013. Energy-efficient optimization for wireless information and power transfer in large-scale MIMO systems employing energy beamforming. IEEE Wirel Commun Lett, 2(6):667-670.

[27]Chen XM, Chen HH, Meng WX, 2014a. Cooperative communications for cognitive radio networks—from theory to applications. IEEE Commun Surv Tutor, 16(3):1180-1193.

[28]Chen XM, Yuen C, Zhang ZY, 2014b. Wireless energy and information transfer tradeoff for limited feedback multi-antenna systems with energy beamforming. IEEE Trans Veh Technol, 63(1):407-412.

[29]Chen XM, Zhang ZY, Chen HH, et al., 2015a. Enhancing wireless information and power transfer by exploiting multi-antenna techniques. IEEE Commun Mag, 53(4):133-141.

[30]Chen XM, Lei L, Zhang HZ, et al., 2015b. Large-scale MIMO relaying techniques for physical layer security: AF or DF? IEEE Trans Wirel Commun, 14(9):5135-5146.

[31]Chen XM, Zhong CJ, Yuen C, et al., 2015c. Multi-antenna relay aided wireless physical layer security. IEEE Commun Mag, 53(12):40-46.

[32]Chen XM, Ng DWK, Chen HH, 2016. Secrecy wireless information and power transfer: challenges and opportunities. IEEE Wirel Commun, 23(2):54-61.

[33]Chen XM, Zhang ZY, Zhong CJ, et al., 2017a. Exploiting multiple-antenna techniques for non-orthogonal multiple access. IEEE J Sel Areas Commun, 35(10):2207-2220.

[34]Chen XM, Ng DWK, Gerstacker W, et al., 2017b. A survey on multiple-antenna techniques for physical layer security. IEEE Commun Surv Tutor, 19(2):1027-1053.

[35]Chen XM, Jia RD, Ng DWK, 2018a. The application of relay to massive non-orthogonal multiple access. IEEE Trans Commun, 66(11):5168-5180.

[36]Chen XM, Zhang ZY, Zhong CJ, et al., 2018b. Exploiting inter-user interference for secure massive non-orthogonal multiple access. IEEE J Sel Areas Commun, 36(4):788-801.

[37]Chen XM, Zhang ZY, Zhong CJ, et al., 2018c. Fully non-orthogonal communication for massive access. IEEE Trans Commun, 66(4):1717-1731.

[38]Chen XM, Jia R, Ng DWK, 2019. On the design of massive non-orthogonal multiple access with imperfect successive interference cancellation. IEEE Trans Commun, 67(3):2539-2551.

[39]Chen ZL, Sohrabi F, Yu W, 2018. Sparse activity detection for massive connectivity. IEEE Trans Signal Process, 66(7):1890-1904.

[40]Chen ZY, Ding ZG, Dai XC, 2016a. Beamforming for combating inter-cluster and intra-cluster interfernece in hybrid NOMA systems. IEEE Access, 4:4452-4463.

[41]Chen ZY, Ding ZG, Xu P, et al., 2016b. Optimal precoding for a QoS optimization problem in two-user MISO-NOMA downlink. IEEE Commun Lett, 20(6):1263-1266.

[42]Cheng HV, Bjornson E, Larsson EG, 2018. Performance analysis of NOMA in training-based multiuser MIMO systems. IEEE Trans Commun, 17(1):372-385.

[43]Chitti K, Rusek F, Tumula C, 2017. Bandwidth minimization under probabilistic constraints and statistical CSI for NOMA. Proc 86th Vehicular Technology Conf, p.1-5.

[44]Choi J, 2015. Minimum power multicast beamforming with superposition coding for multiresolution broadcast and application to NOMA systems. IEEE Trans Commun, 63(3):791-800.

[45]Choi J, 2016a. Power allocation for max-sum rate and max-min rate proportional fairness in NOMA. IEEE Commun Lett, 20(10):2055-2058.

[46]Choi J, 2016b. On the power allocation for MIMO-NOMA systems with layered transmission. IEEE Trans Wirel Commun, 15(5):3226-3237.

[47]Chraiti M, Ghrayeb A, Assi C, 2018. A NOMA scheme for a two-user MISO downlink channel with unknow CSIT. IEEE Trans Wirel Commun, 17(10):6775-6789.

[48]Cui JJ, Liu YW, Ding ZG, et al., 2018a. Optimal user scheduling and power allocation for millimeter wave NOMA systems. IEEE Trans Wirel Commun, 17(3):1502-1517.

[49]Cui JJ, Ding ZG, Fan PZ, et al., 2018b. Unsupervised machine learning based user clustering in mmwave-NOMA systems. IEEE Trans Wirel Commun, 17(11):7425-7440.

[50]Cui JJ, Ding ZG, Fan PZ, 2018c. Outage probability constrained MIMO-NOMA design under imperfect CSI. IEEE Trans Wirel Commun, 17(12):8239-8255.

[51]Dai JL, Sun L, Yang CY, 2017. On the average rate and power allocation of uplink multi-antenna NOMA systems. Proc 86th Vehicular Technology Conf, p.1-5.

[52]Dai LL, Wang BC, Yuan YF, 2015. Non-orthogonal multiple access for 5G: solutions, challenges, opportunities, and future research trends. IEEE Commun Mag, 53(9):74-81.

[53]Dai LL, Wang BC, Ding ZG, et al., 2018. A survey of non-orthogonal multiple access for 5G. IEEE Commun Surv Tutor, 20(3):2294-2323.

[54]Dai LL, Wang BC, Peng MG, et al., 2019. Hybrid precoding-based millimeter-wave massive MIMO-NOMA with simultaneous wireless information and power transfer. IEEE J Sel Areas Commun, 37(1):131-141.

[55]Dai W, Liu YJ, Rider B, 2008. Quantization bounds on Grassmann manifolds and applications to MIMO communications. IEEE Trans Inform Theory, 54(3):1108-1123.

[56]Ding JF, Cai J, Yi CY, 2019. An improved coalition game approach for MIMO-NOMA clustering integrating beamforming and power allocation. IEEE Trans Veh Technol, 68(2):1672-1687.

[57]Ding ZG, Yang Z, Fan PZ, et al., 2014. On the performance of non-orthogonal multiple access in 5G systems with randomly deployed users. IEEE Signal Process Lett, 21(12):1501-1505.

[58]Ding ZG, Adachi F, Poor HV, 2016a. The application of MIMO to non-orthogonal multiple access. IEEE Trans Wirel Commun, 15(1):537-552.

[59]Ding ZG, Schober R, Poor HV, 2016b. A general MIMO framework for NOMA downlink and uplink transmission based on signal alignment. IEEE Trans Wirel Commun, 15(6):4438-4454.

[60]Ding ZG, Fan PZ, Poor HV, 2016c. Impact of user pairing on 5G nonorthogonal multiple-access downlink transmissions. IEEE Trans Veh Technol, 65(8):6010-6023.

[61]Ding ZG, Dai LL, Schober R, et al., 2017a. NOMA meets finite resolution analog beamforming in massive MIMO and milimeter-wave networks. IEEE Commun Lett, 21(8):1879-1882.

[62]Ding ZG, Fan PZ, Poor HV, 2017b. Random beamforming in millimeter-wave NOMA networks. IEEE Access, 5:7667-7681.

[63]Ding ZG, Zhao ZY, Peng MG, et al., 2017c. On the spectral efficiency and security enhancements of NOMA assisted multicast-unicast streaming. IEEE Trans Commun, 65(7):3151-3163.

[64]Ding ZG, Lei XF, Karagiannidis GK, 2017d. A survey on non-orthogonal multiple access for 5G networks: research challenges and future trends. IEEE J Sel Areas Commun, 35(10):2181-2195.

[65]Ding ZG, Xu M, Chen Y, et al., 2018. Embracing non-orthogonal multiple access in future wireless networks. Front Inform Technol Electron Eng, 19(3):322-339.

[66]Do TN, da Costa DB, Duong TQ, et al., 2018. Improving the performance of cell-edge users in MISO-NOMA systems using TAS and SWIPT-based cooperative transmissions. IEEE Trans Green Commun Netw, 2(1):49-62.

[67]Du Y, Cheng C, Dong BH, et al., 2018a. Block-sparsity-based multiuser detection for uplink grant-free NOMA. IEEE Trans Wirel Commun, 17(12):7894-7909.

[68]Du Y, Dong BH, Zhu WY, et al., 2018b. Joint channel estimation and multiuser detection for uplink grant-free NOMA. IEEE Wirel Commun Lett, 7(4):682-685.

[69]Elijah O, Leow CY, Rahman TA, et al., 2016. A comprehensive survey of pilot contamination in massive MIMO-5G system. IEEE Commun Surv Tutor, 18(2):905-923.

[70]Fang F, Zhang HJ, Cheng JL, et al., 2017. Joint user scheduling and power allocation optimization for energy-efficient NOMA systems with imperfect CSI. IEEE J Sel Areas Commun, 35(12):2874-2885.

[71]Gomez G, Martin-Vega FJ, Lopez-Martinez FJ, et al., 2019. Physical layer security in uplink NOMA multi-antenna systems with randomly distributed eavesdroppers. IEEE Access, 7:70422-70435.

[72]Hanif MF, Ding ZG, Ratnarajah T, et al., 2016. A minorization-maximization method for optimizing sum rate in the downlink of non-orthogonal multiple access systems. IEEE Trans Signal Process, 64(1):76-88.

[73]Haupt RL, Rahmat-Samii Y, 2015. Antenna array developments: a perspective on the past, present and future. IEEE Anten Propag Mag, 57(1):86-96.

[74]He B, Liu A, Yang N, et al., 2017. On the design of secure non-orthogonal multiple access systems. IEEE J Sel Areas Commun, 35(10):2196-2206.

[75]Hosseini K, Yu W, Adve RS, 2014. Large-scale MIMO versus network MIMO for multicell interference mitigation. IEEE J Sel Topics Signal Process, 8(5):930-941.

[76]Hoydis J, ten Brink S, Debbah M, 2013. Massive MIMO in the UL/DL of cellular networks: how many antennas do we need? IEEE J Sel Areas Commun, 31(2):160-171.

[77]Hu CY, Wang YS, Hong YWP, et al., 2017. MMSE hybrid beamforming for weighted sum rate maximization in NOMA systems. Proc Global Communications Conf, p.1-6.

[78]Hu XL, Zhong CJ, Han Y, et al., 2019. Angle-domain mmWave MIMO NOMA systems: analysis and design. Proc Int Conf on Communications, p.1-6.

[79]Islam SMR, Avazov N, Dobre OA, 2017. Power-domain non-orthogonal multiple access (NOMA) in 5G systems: potentials and challenges. IEEE Commun Surv Tutor, 19(2):721-742.

[80]Jia RD, Chen XM, Zhong CJ, et al., 2019. Design of non-orthogonal beamspace multiple access for cellular Internet-of-Things. IEEE J Sel Top Signal Process, 13(3):538-552.

[81]Kader F, Shin SY, 2016. Cooperative spectrum sharing with space time block coding and non-orthogonal multiple access. Proc 8th Int Conf on Ubiquitous and Future Networks, p.490-494.

[82]Kang JM, Kim IM, 2018. Optimal user grouping for downlink NOMA. IEEE Wirel Commun Lett, 7(5):724-727.

[83]Khisti A, Wornell GW, 2010. Secure transmission with multiple antennas I: the MISOME wiretap channel. IEEE Trans Inform Theory, 56(7):3088-3014.

[84]Kim B, Lim S, Kim H, et al., 2013. Non-orthogonal multiple access in a downlink multiuser beamforming system. Proc Military Communications Conf, p.1278-1283.

[85]Kim J, Koh J, Kang J, et al., 2015. Design of user clustering and precoding for downlink non-orthogonal multiple access (NOMA). Proc Military Communications Conf, p.1170-1175.

[86]Lei HJ, Zhang JM, Park KH, et al., 2018. Secrecy outage of max-min TAS scheme in MIMO-NOMA systems. IEEE Trans Veh Technol, 67(8):6981-6990.

[87]Lei L, Yuan D, Ho CK, et al., 2016. Power and channel allocation for non-orthogonal multiple access in 5G systems: tractability and computation. IEEE Trans Wirel Commun, 15(12):8580-8594.

[88]Li F, Zhang QT, 2007. Transmission strategy for MIMO correlated Rayleigh fading channels with mutual coupling. Proc Int Conf on Communications, p.1030-1035.

[89]Li YQ, Jiang M, Zhang Q, et al., 2017. Secure beamforming in downlink MISO nonorthogonal multiple access systems. IEEE Trans Veh Technol, 66(8):7563-7567.

[90]Li YQ, Jiang M, Zhang Q, et al., 2018. Cooperative non-orthogonal multiple access in multiple-input-multiple-output channels. IEEE Trans Wirel Commun, 17(3):2068-2079.

[91]Liang W, Ding ZG, Li YH, et al., 2017. User pairing for downlink non-orthogonal multiple access networks using matching algorithm. IEEE Trans Commun, 65(12):5319-5332.

[92]Liu F, Petrova M, 2018. Dynamic power allocation for downlink multi-carrier NOMA systems. IEEE Commun Lett, 22(9):1930-1933.

[93]Liu JX, Xiong K, Lu Y, et al., 2008. SWIPT-enabled NOMA networks with full-duplex relaying. Proc Global Communications Conf, p.1-6.

[94]Liu L, Larsson EG, Yu W, et al., 2018. Sparse signal processing for grant-free massive connectivity: a future paradigm for random access protocols in the Internet of Things. IEEE Signal Process Mag, 35(5):88-99.

[95]Liu L, Chi YH, Yuen C, et al., 2019. Capacity-achieving MIMO-NOMA: iterative LMMSE detection. IEEE Trans Signal Process, 67(7):1758-1773.

[96]Liu PL, Li Y, Cheng W, et al., 2019. Energy-efficient power allocation for millimeter wave beamspace MIMO-NOMA systems. IEEE Access, 7:114582-114592.

[97]Liu X, Liu YN, Wang XB, et al., 2017. Highly efficient 3-D resource allocation techniques in 5G for NOMA-enabled massive MIMO and relaying systems. IEEE J Sel Areas Commun, 35(12):2785-2797.

[98]Liu YW, Elkashlan M, Ding ZG, et al., 2016. Fairness of user clustering in MIMO non-orthogonal multiple access systems. IEEE Commun Lett, 20(7):1465-1468.

[99]Liu YW, Qin ZJ, Elkashlan M, et al., 2017. Nonorthogonal multiple access for 5G and beyond. Proc IEEE, 105(12):2347-2381.

[100]Liu ZX, Lei L, Zhang NB, et al., 2017. Joint beamforming and power optimization with iterative user clustering for MISO-NOMA systems. IEEE Access, 5:6872-6884.

[101]Love DJ, Heath RW, Lau VKN, et al., 2008. An overview of limited feedback in wireless communication systems. IEEE J Sel Areas Commun, 26(8):1341-1365.

[102]Lu L, Li GY, Swindlehurst AL, et al., 2014. An overview of massive MIMO: benefits and challenges. IEEE J Sel Top Signal Process, 8(5):742-758.

[103]Lv L, Chen J, Ni Q, 2016. Cooperative non-orthogonal multiple access in cognitive radio. IEEE Commun Lett, 20(10):2059-2062.

[104]Lv L, Ni Q, Ding ZG, et al., 2017. Application of non-orthogonal multiple access in cooperative spectrum-sharing networks over Nakagami-m fading channels. IEEE Trans Veh Technol, 66(6):5506-5511.

[105]Lv L, Ding ZG, Ni Q, et al., 2018a. Secure MISO-NOMA transmission with artificial noise. IEEE Trans Veh Technol, 67(7):6700-6705.

[106]Lv L, Yang L, Jiang H, et al., 2018b. When NOMA meets multiuser cognitive radio: opportunistic cooperation and user scheduling. IEEE Trans Veh Technol, 67(7):6679-6684.

[107]Lv T, Ma Y, Zeng J, et al., 2018. Millimeter-wave NOMA transmission in cellular M2M communications for Internet of Things. IEEE Internet Things J, 5(3):1989-2000.

[108]Manglayev T, Kizilirmak RC, Kho YH, et al., 2017. NOMA with imperfect SIC implementation. Proc 17th Int Conf on Smart Technologies, p.22-25.

[109]Mei XD, Wu KL, 2018. How low does mutual coupling need to be for MIMO antennas. Proc Int Symp on Antennas and Propagation & USNC/URSI National Radio Science Meeting, p.1579-1580.

[110]Mi D, Dianati M, Zhang L, et al., 2017. Massive MIMO performance with imperfect channel reciprocity and channel estimation error. IEEE Trans Wirel Commun, 65(9):3734-3749.

[111]Mitra R, Bhatia V, 2017. Precoded Chebyshev-NLMS-based pre-distorter for nonlinear LED compensation in NONMA-VLC. IEEE Trans Commun, 65(11):4845-4856.

[112]Moltafet M, Yamchi NM, Javan MR, et al., 2018a. Comparison study between PD-NOMA and SCMA. IEEE Trans Veh Technol, 67(2):1830-1834.

[113]Nguyen NP, Dobre OA, Nguyen LD, et al., 2019. Secure downlink massive MIMO NOMA network in the presence of a multiple-antenna eavesdropper. Proc Int Conf on Communications, p.1-6.

[114]Nguyen TS, Duy HHK, Nguyen H, et al., 2018. Throughput analysis in relaying cooperative systems considering time-switching with NOMA. Proc 41st Int Conf on Telecommunications and Signal Processing, p.1-4.

[115]Nguyen VD, Tuan HD, Duong TQ, et al., 2017a. Joint fractional time allocation and beamforming for downlink multiuser MISO systems. IEEE Commun Lett, 21(12):2650-2653.

[116]Nguyen VD, Tuan HD, Duong TQ, et al., 2017b. Precoder design for signal superposition in MIMO-NOMA multicell networks. IEEE J Sel Areas Commun, 35(12):2681-2695.

[117]Nomikos N, Michailidis ET, Trakadas P, et al., 2019. Flex-NOMA: exploiting buffer-aided relay selection for massive connectivity in the 5G uplink. IEEE Access, 7:88743-88755.

[118]Palattella MR, Dohler M, Grieco A, 2016. Internet of Things in the 5G era: enablers, architecture, and business models. IEEE J Sel Areas Commun, 34(3):510-527.

[119]Peng JJ, Chen W, Ai B, et al., 2017. Joint optimization of constellation with mapping matrix for SCMA codebook design. IEEE Signal Process Lett, 24(3):264-268.

[120]Qi Q, Chen XM, 2019. Wireless powered massive access for cellular Internet of Things with imperfect SIC and nonlinear EH. IEEE Int Things J, 6(2):3110-3120.

[121]Sedaghat MA, Müller RR, 2018. On user pairing in uplink NOMA. IEEE Trans Wirel Commun, 17(5):3474-3486.

[122]Senel K, Larsson EG, 2018. Grant-free massive MTC-enabled massive MIMO: a compressive sensing approach. IEEE Trans Commun, 66(12):6164-6175.

[123]Seo J, Sung Y, 2018. Beam design and user scheduling for nonorthogonal multiple access with multiple antenna based on Pareto optimality. IEEE Trans Signal Process, 66(11):2876-2891.

[124]Shao XD, Chen XM, Zhong CJ, et al., 2019. A unified design of massive access for cellular Internet of Things. IEEE Int Things J, 6(2):3934-3947.

[125]Shi Z, Yang GH, Fu YR, et al., 2018. Performance analysis of MIMO-NOMA systems with randomly deployed users. Proc Global Communications Conf, p.1-7.

[126]Shin W, Vaezi M, Lee B, et al., 2017a. Coordinated beamforming for multi-cell MIMO-NOMA. IEEE Commun Lett, 21(1):84-87.

[127]Shin W, Vaezi M, Lee B, et al., 2017b. Non-orthogonal multiple access in multi-cell networks: theory, performance, and practical challenges. IEEE Commun Mag, 55(10):176-183.

[128]Shin W, Yang H, Vaezi M, et al., 2017c. Relay-aided NOMA in uplink cellular networks. IEEE Signal Process Lett, 24(12):1842-1846.

[129]Sohrabi F, Yu W, 2016. Hybrid digital and analog beamforming design for large-scale antenna arrays. IEEE J Sel Top Signal Process, 10(3):501-513.

[130]Sun Q, Han SF, Chin-Lin I, et al., 2015. On the ergodic capacity of MIMO NOMA systems. IEEE Wirel Commun Lett, 4(4):405-408.

[131]Sun YS, Ding ZG, Dai XC, et al., 2018. A feasibility study on network NOMA. IEEE Trans Commun, 66(9):4303-4317.

[132]Tian MX, Zhang Q, Zhao S, et al., 2018. Robust beamforming in downlink MIMO NOMA networks using cutting-set method. IEEE Commun Lett, 22(3):574-577.

[133]Timotheou S, Krikidis I, 2015. Fairness for non-orthogonal multiple access in 5G systems. IEEE Signal Process Lett, 22(10):1647-1651.

[134]Tong D, Ding YH, Liu Y, et al., 2019. A MIMO-NOMA framework with complex-valued power coefficients. IEEE Trans Veh Technol, 68(3):2244-2259.

[135]TR G, 2015. Technical Specification Group GSM/EDGE Radio Access Network; Cellular System Support for Ultra-low Complexity and Low Throughput Internet of Things (CIoT) TR 45.820. 3rd Generation Partnership Project, 3GPP.

[136]Tsai YR, Wei HA, 2018. Quality-balanced user clustering schemes for non-orthogonal multiple access systems. IEEE Commun Lett, 22(1):113-116.

[137]Vaezi M, Schober R, Ding ZG, et al., 2019. Non-orthogonal multiple access: common myths and critical questions. IEEE Wirel Commun, 26(5):174-180.

[138]Varshney LR, 2008. Transporting information and energy simultaneously. Proc Int Symp on Information Theory, p.1612-1616.

[139]Wan D, Chen D, Song B, et al., 2018. From IoT to 5G I-IoT: te next generation IoT-based intelligent algorithms and 5G technologies. IEEE Commun Mag, 56(10):114-120.

[140]Wan DH, Wen MW, Ji F, et al., 2018. Cooperative NOMA systems with partial channel state information over Nakagami-m fading channels. IEEE Trans Commun, 66(3):947-958.

[141]Wang BC, Dai LL, Zhang Y, et al., 2016. Dynamic compressive sensing-based multi-user detection for uplink grant-free NOMA. IEEE Commun Lett, 20(11):2320-2323.

[142]Wang BC, Dai LL, Wang ZC, et al., 2017. Spectrum and energy-efficient beamspace MIMO-NOMA for millimeter-wave communications using lens antenna array. IEEE J Sel Areas Commun, 35(10):2370-2382.

[143]Wang CS, Wang Y, Wang W, et al., 2017. Electromechanical coupling based influence of structural error on radiation and scattering performance of array antennas. Electron Lett, 53(14):904-906.

[144]Wang CS, Wang Y, Zhou JZ, et al., 2018. Compensation method for distorted planar array antennas based on structural-electromagnetic coupling and fast Fourier transform. IET Microw Anten Propag, 12(6):954-962.

[145]Wang H, Zhang ZY, Chen XM, 2017. Resource allocation for downlink joint space-time and power domain non-orthogonal multiple access. Proc 9th Int Conf on Wireless Communications and Signal Processing, p.1-6.

[146]Wang H, Zhang RB, Song RF, et al., 2018. A novel power minimization precoding scheme for MIMO-NOMA uplink systems. IEEE Commun Lett, 22(5):1106-1109.

[147]Wang JH, Peng Q, Huang YM, et al., 2017. Convexity of weighted sum rate maximization in NOMA systems. IEEE Signal Process Lett, 24(9):1323-1327.

[148]Wang XS, Wang JT, He LZ, et al., 2018. Outage analysis for downlink NOMA with statistical channel state information. IEEE Wirel Commun Lett, 7(2):142-145.

[149]Wang XY, Jia M, Guo Q, et al., 2019. Full-duplex relaying cognitive radio network with cooperative nonorthogonal multiple access. IEEE Syst J, 13(4):3897-3908.

[150]Wei C, Liu HP, Zhang ZC, et al., 2017. Approximate message passing-based joint user activity and data detection for NOMA. IEEE Commun Lett, 21(3):640-643.

[151]Wei F, Chen W, 2017. Low complexity iterative receiver design for sparse code multiple access. IEEE Trans Commun, 65(2):621-634.

[152]Wei ZQ, Ng DWK, Yuan JH, 2016a. Power-efficient resource allocation for MC-NOMA with statistical channel state information. Proc Global Communications Conf, p.1-7.

[153]Wei ZQ, Yuan JH, Ng DWK, et al., 2016b. A survey of downlink non-orthogonal multiple access for 5G wireless communication networks. ZTE Commun, 14(4):17-25.

[154]Wei ZQ, Ng DWK, Yuan JH, et al., 2017. Optimal resource allocation for power-efficient MC-NOMA with imperfect channel state information. IEEE Trans Commun, 65(9):3944-3961.

[155]Wu QQ, Li GY, Chen W, et al., 2017. An overview of sustainable green 5G networks. IEEE Wirel Commun, 24(4):72-80.

[156]Wu W, Yin XJ, Deng P, et al., 2019. Transceiver design for downlink SWIPT NOMA systems with cooperative full-duplex relaying. IEEE Access, 7:33464-33472.

[157]Wu YN, Chen XM, 2016. Robust beamforming and power splitting for secrecy wireless information and power transfer in cognitive relay networks. IEEE Commun Lett, 20(6):1152-1155.

[158]Xi W, Zhou H, 2016. Enhanced CSI feedback scheme for non-orthogonal multiple access. Proc Wireless Days, p.1-3.

[159]Xia B, Wang JL, Xiao KX, et al., 2018. Outage performance analysis for the advanced SIC receiver in wireless NOMA systems. IEEE Trans Veh Technol, 67(7):6711-6715.

[160]Xiao L, Li YD, Dai CH, et al., 2018. Reinforcement learning-based NOMA power allocation in the presence of smart jamming. IEEE Trans Veh Technol, 67(4):3377-3389.

[161]Xiao Y, Hao L, Ma Z, et al., 2018. Forwarding strategy selection in dual-hop NOMA relaying systems. IEEE Commun Lett, 22(8):1644-1647.

[162]Xiao ZY, Zhu LP, Choi J, et al., 2018. Joint power allocation and beamforming for non-orthogonal multiple access (NOMA) in 5G millimeter wave communications. IEEE Trans Wirel Commun, 17(5):2961-2974.

[163]Xiao ZY, Zhu LP, Gao Z, et al., 2019. User fairness non-orthogonal multiple access (NOMA) for millimeter-wave communications with analog beamforming. IEEE Trans Wirel Commun, 18(7):3411-3423.

[164]Xu L, Zhou Y, Wang P, et al., 2018. Max-min resource allocation for video transmission in NOMA-based cognitive wireless networks. IEEE Trans Commun, 66(11):5804-5813.

[165]Xu LD, He W, Li SC, 2014. Internet of Things in industries: a survey. IEEE Trans Ind Inform, 10(4):2233-2243.

[166]Xu P, Cumanan K, 2017. Optimal power allocation scheme for non-orthogonal multiple access with α-fairness. IEEE J Sel Areas Commun, 35(10):2357-2369.

[167]Xu YQ, Shen C, Ding ZH, et al., 2017. Joint beamforming and power-splitting control in downlink cooperative SWIPT NOMA systems. IEEE Trans Signal Process, 65(18):4874-4886.

[168]Xue C, Zhang Q, Li Q, et al., 2017. Joint power allocation and relay beamforming in nonorthogonal multiple access amplify-and-forward relay networks. IEEE Trans Veh Technol, 66(8):7558-7562.

[169]Yalcin AZ, Yuksel M, Bahceci I, 2019. Downlink MU-MIMO with QoS aware transmission: precoder design and performance analysis. IEEE Trans Wirel Commun, 18(2):969-982.

[170]Yang N, Wang LE, Geraci G, et al., 2015. Safeguarding 5G wireless communication networks using physical layer security. IEEE Commun Mag, 53(4):20-27.

[171]Yang Q, Wang HM, Ng DWK, et al., 2017. NOMA in downlink SDMA with limited feedback: performance analysis and optimization. IEEE J Sel Areas Commun, 35(10):2281-2294.

[172]Yang Z, Ding ZG, Fan PZ, et al., 2016. A general power allocation scheme to guarantee quality of service in downlink and uplink NOMA systems. IEEE Trans Wirel Commun, 15(11):7244-7257.

[173]Yang ZH, Xu W, Pan CH, et al., 2017. On the optimality of power allocation for NOMA downlink with individual QoS constraints. IEEE Commun Lett, 21(7):1649-1652.

[174]Yang ZH, Pan CH, Xu W, et al., 2018. Compressive sensing-based user clustering for downlink NOMA systems with decoding power. IEEE Signal Process Lett, 25(5):660-664.

[175]Yu YH, Chen H, Li YH, et al., 2017a. Antenna selection in MIMO cognitive radio-inspired NOMA systems. IEEE Commun Lett, 21(12):2658-2661.

[176]Yu YH, Chen H, Li YH, et al., 2017b. Antenna selection for MIMO-NOMA networks. Proc Int Conf on Communications, p.1-6.

[177]Yue XW, Liu YW, Kang SL, et al., 2018a. Exploiting full/half-duplex user relaying in NOMA systems. IEEE Trans Commun, 66(2):560-575.

[178]Yue XW, Liu YW, Kang SL, et al., 2018b. Spatially random relay selection for full/half-duplex cooperative NOMA networks. IEEE Trans Commun, 66(8):3294-3308.

[179]Yuksel M, Erkip E, 2007. Multiple-antenna cooperative wireless systems: a diversity-multiplexing tradeoff perspective. IEEE Trans Inform Theory, 53(10):3371-3393.

[180]Zanella A, Bui N, Castellani A, 2014. Internet of Things for smart cities. IEEE Internet Things J, 1(1):22-32.

[181]Zaw CW, Tun YK, Hong CS, 2017. User clustering based on correlation in 5G using semidefinite programming. Proc 19th Asia-Pacific Network Operations and Management Symp, p.342-345.

[182]Zeng M, Yadav A, Dobre OA, et al., 2017. Capacity comparison between MIMO-NOMA and MIMO-OMA with multiple users in a cluster. IEEE J Sel Areas Commun, 35(10):2413-2424.

[183]Zeng M, Yadav A, Dobre OA, et al., 2018. Energy-efficient power allocation for MIMO-NOMA with multiple users in a cluster. IEEE Access, 6:5170-5181.

[184]Zeng M, Hao W, Dobre OA, et al., 2019. Energy-efficient power allocation in uplink mmwave massive MIMO with NOMA. IEEE Trans Veh Technol, 68(3):3000-3004.

[185]Zhang D, Zhu ZY, Xu C, et al., 2017. Capacity analysis of NOMA with mmwave massive MIMO systems. IEEE J Sel Areas Commun, 35(7):1606-1618.

[186]Zhang HJ, Fang F, Cheng JL, et al., 2018. Energy-efficient resource allocation in NOMA heterogeneous networks. IEEE Wirel Commun, 25(2):48-53.

[187]Zhang J, Andrews JG, 2010. Adaptive spatial intercell interference cancellation in multicell wireless networks. IEEE J Sel Areas Commun, 28(9):1455-1468.

[188]Zhang L, Liu JQ, Xiao M, et al., 2017. Performance analysis and optimization in downlink NOMA systems with cooperative full-duplex relaying. IEEE J Sel Areas Commun, 35(10):2398-2412.

[189]Zhang NB, Wang J, Kan GX, et al., 2016. Uplink nonorthogonal multiple access in 5G systems. IEEE Commun Lett, 20(3):458-461.

[190]Zhang Q, Li QZ, Qin JY, 2016. Robust beamforming for nonorthogonal multiple-access systems in MISO channels. IEEE Trans Veh Technol, 65(12):10231-10236.

[191]Zhang SQ, Wu QQ, Xu SG, et al., 2017. Fundamental green tradeoffs: progresses, challenges, and impacts on 5G networks. IEEE Commun Surv Tutor, 19(1):33-56.

[192]Zhang XK, Gao Q, Gong C, et al., 2017. User grouping and power allocation for NOMA visible light communication multi-cell networks. IEEE Commun Lett, 21(4):777-780.

[193]Zhang Y, Yang Q, Zheng TX, et al., 2016a. Energy efficiency optimization in cognitive radio inspired non-orthogonal multiple access. Proc 27th Annual Int Symp on Personal, Indoor, and Mobile Radio Communications, p.1-6.

[194]Zhang Y, Wang HM, Yang Q, et al., 2016b. Secrecy sum rate maximization in non-orthogonal multiple access. IEEE Commun Lett, 20(5):930-933.

[195]Zheng HY, Hou SJ, Li H, et al., 2018. Power allocation and user clustering for uplink MC-NOMA in D2D underlaid cellular networks. IEEE Wirel Commun Lett, 7(6):1030-1033.

[196]Zhong CJ, Zhang ZY, 2016. Non-orthogonal multiple access with cooperative full-duplex relaying. IEEE Commun Lett, 20(12):2478-2481.

[197]Zhou FH, Chu Z, Sun HJ, et al., 2018a. Artificial noise aided secure cognitive beamforming for cooperative MISO-NOMA using SWIPT. IEEE J Sel Areas Commun, 36(4):918-931.

[198]Zhou FH, Wu YP, Liang YC, et al., 2018b. State of the art, taxonomy, and open issues on cognitive radio networks with NOMA. IEEE Wirel Commun, 25(2):100-108.

[199]Zhou Y, Wong VWS, Schober R, 2018. Dynamic decode-and-forward based cooperative NOMA with spatially random users. IEEE Trans Wirel Commun, 17(5):3340-3356.

[200]Zhu JY, Wang JH, Huang YM, et al., 2017. On optimal power allocation for downlink non-orthogonal multiple access systems. IEEE J Sel Areas Commun, 35(12):2744-2757.

[201]Zhu LF, Zhao HB, Liang D, et al., 2015. Mutual coupling research of multi-antenna in dual-channel balise. Proc 18th Int Conf on Intelligent Transportation Systems, p.2200-2204.

[202]Zhu LP, Zhang J, Xiao ZY, et al., 2018. Optimal user pairing for downlink non-orthogonal multiple access (NOMA). IEEE Wirel Commun Lett, 8(2):328-331.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE