Full Text:   <2301>

Summary:  <1732>

CLC number: TP311

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 2019-01-08

Cited: 0

Clicked: 6036

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Gang Wang

http://orcid.org/0000-0002-7266-2412

-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering  2019 Vol.20 No.1 P.4-17

http://doi.org/10.1631/FITEE.1800590


Distribution system state estimation: an overview of recent developments


Author(s):  Gang Wang, Georgios B. Giannakis, Jie Chen, Jian Sun

Affiliation(s):  Department of Electrical and Computer Engineering and Digital Technology Center, University of Minnesota, Minneapolis, MN 55455, USA; more

Corresponding email(s):   gangwang@umn.edu, georgios@umn.edu, chenjie@bit.edu.cn, sunjian@bit.edu.cn

Key Words:  State estimation, Cramér-Rao bound, Feasible point pursuit, Semidefinite relaxation, Proximal linear algorithm


Gang Wang, Georgios B. Giannakis, Jie Chen, Jian Sun. Distribution system state estimation: an overview of recent developments[J]. Frontiers of Information Technology & Electronic Engineering, 2019, 20(1): 4-17.

@article{title="Distribution system state estimation: an overview of recent developments",
author="Gang Wang, Georgios B. Giannakis, Jie Chen, Jian Sun",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="20",
number="1",
pages="4-17",
year="2019",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.1800590"
}

%0 Journal Article
%T Distribution system state estimation: an overview of recent developments
%A Gang Wang
%A Georgios B. Giannakis
%A Jie Chen
%A Jian Sun
%J Frontiers of Information Technology & Electronic Engineering
%V 20
%N 1
%P 4-17
%@ 2095-9184
%D 2019
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.1800590

TY - JOUR
T1 - Distribution system state estimation: an overview of recent developments
A1 - Gang Wang
A1 - Georgios B. Giannakis
A1 - Jie Chen
A1 - Jian Sun
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 20
IS - 1
SP - 4
EP - 17
%@ 2095-9184
Y1 - 2019
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.1800590


Abstract: 
In the envisioned {smart grid, high penetration of uncertain renewables, unpredictable participation of (industrial) customers, and purposeful manipulation of smart meter readings, all highlight the need for accurate, fast, and robust power system state estimation (PSSE). Nonetheless, most real-time data available in the current and upcoming transmission/distribution systems are nonlinear in power system states (i.e., nodal voltage phasors). Scalable approaches to dealing with PSSE tasks undergo a paradigm shift toward addressing the unique modeling and computational challenges associated with those nonlinear measurements. In this study, we provide a contemporary overview of PSSE and describe the current state of the art in the nonlinear weighted least-squares and least-absolute-value PSSE. To benchmark the performance of unbiased estimators, the Cramér-Rao lower bound is developed. Accounting for cyber attacks, new corruption models are introduced, and robust PSSE approaches are outlined as well. Finally, distribution system state estimation is discussed along with its current challenges. Simulation tests corroborate the effectiveness of the developed algorithms as well as the practical merits of the theory.

智能电网状态估计方法最新进展综述

摘要:随着大量不确定可再生能源注入、大规模工业和个体用户市场参与、恶意智能仪表数据篡改等,精确、快速、鲁棒的状态估计方法对未来智能电网系统变得尤为重要。然而,目前电力系统采用的数据采集与监视控制系统只能获取系统状态(即系统所有节点的电压相量)的非线性测量数据。最新智能电网状态估计研究正着力于解决非线性测量数据带给可扩展性状态估计方法建模和计算方面的挑战。为使读者更好理解该领域最新进展,本文综述了基于非线性最小二乘和最小绝对误差的智能电网状态估计方法。为更好比较不同状态估计方法性能,首先描述了智能电网状态估计问题的克拉美罗下界。针对网络攻击问题,引入新的电力系统测量数据攻击模型,并介绍相应鲁棒状态估计方法。最后,分析配电网系统状态估计最新研究进展和挑战。仿真实验验证了该状态估计方法和理论的有效性和优点。

关键词:状态估计;克拉美罗下界;可行解追逐;半正定松弛;近线性算法;复合优化;网络攻击;坏数据检测

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Abur A, Celik MK, 1991. A fast algorithm for the weighted least-absolute-value state estimation (for power systems). IEEE Trans Power Syst, 6(1):1-8.

[2]Abur A, Gómez-Expósito A, 2004. Power System State Estimation: Theory and Implementation. Marcel Dekker, New York, USA.

[3]Aghamolki HG, Miao Z, Fan L, 2018. SOCP convex relaxation-based simultaneous state estimation and bad data identification. https://arxiv.org/abs/1804.05130

[4]Ahmad F, Rasool A, Ozsoy E, et al., 2018. Distribution system state estimation—a step towards smart grid. Renew Sust Energ Rev, 81:2659-2671.

[5]Baran ME, 2001. Challenges in state estimation on distribution systems. Power Engineering Society Summer Meeting, p.429-433.

[6]Ben-Tal A, Nemirovski A, 2001. Lectures on Modern Convex Optimization: Analysis, Algorithms, and Engineering Applications. SIAM, Philadelphia, USA.

[7]Bertsekas DP, 1999. Nonlinear Programming. Athena Scientific, Belmont, Massachusetts, USA.

[8]Bhela S, Kekatos V, Veeramachaneni S, 2018. Enhancing observability in distribution grids using smart meter data. IEEE Trans Smart Grid, 9(6):5953-5961.

[9]Burke JV, Ferris MC, 1995. A Gauss-Newton method for convex composite optimization. Math Programm, 71(2):179-194.

[10]Cand‘es EJ, Li X, Soltanolkotabi M, 2015. Phase retrieval via Wirtinger flow: theory and algorithms. IEEE Trans Inform Theory, 61(4):1985-2007.

[11]Caro E, Conejo A, 2012. State estimation via mathematical programming: a comparison of different estimation algorithms. IET Gener Transm Distrib, 6(6):545-553.

[12]Christie RD, 1999. Power Systems Test Case Archive. University of Washington. https://labs.ece.uw.edu/pstca/

[13]Clements KA, 2011. The impact of pseudo-measurements on state estimator accuracy. IEEE Power and Energy Society General Meeting, p.1-4.

[14]Della Giustina D, Pau M, Pegoraro PA, et al., 2014. Electrical distribution system state estimation: measurement issues and challenges. IEEE Instrum Meas Mag, 17(6):36-42.

[15]Duchi JC, Ruan F, 2017a. Solving (most) of a set of quadratic equalities: composite optimization for robust phase retrieval. Inform Infer J IMA, iay015.

[16]Duchi JC, Ruan F, 2017b. Stochastic methods for composite optimization problems. https://arxiv.org/abs/1703.08570

[17]Džafić I, Jabr RA, Hrnjić T, 2018a. High performance distribution network power flow using Wirtinger calculus. IEEE Trans Smart Grid, in press.

[18]Dvzafić I, Jabr RA, Hrnjić T, 2018b. Hybrid state estimation in complex variables. IEEE Trans Power Syst, 33(5):5288-5296.

[19]Fairley P, 2016. Cybersecurity at US utilities due for an upgrade: tech to detect intrusions into industrial control systems will be mandatory. IEEE Spectr, 53(5):11-13.

[20]Fletcher R, Watson GA, 1980. First and second order conditions for a class of nondifferentiable optimization problems. Math Programm, 18(1):291-307.

[21]Giannakis GB, Kekatos V, Gatsis N, et al., 2013. Monitoring and optimization for power grids: a signal processing perspective. IEEE Signal Process Mag, 30(5):107-128.

[22]Göl M, Abur A, 2014. LAV based robust state estimation for systems measured by PMUs. IEEE Trans Smart Grid, 5(4):1808-1814.

[23]Huang YF, Werner S, Huang J, et al., 2012. State estimation in electric power grids: meeting new challenges presented by the requirements of the future grid. IEEE Signal Process Mag, 29(5):33-43.

[24]Huber PJ, 2011. Robust Statistics. In: Lovric M (Ed.), International Encyclopedia of Statistical Science. Springer, Berlin, p.1248-1251.

[25]Jabr R, Pal B, 2003. Iteratively re-weighted least-absolute-value method for state estimation. IET Gener Transm Distrib, 150(4):385-391.

[26]Jabr R, Pal B, 2004. Iteratively reweighted least-squares implementation of the WLAV state-estimation method. IET Gener Transm Distrib, 151(1):103-108.

[27]Kay SM, 1993. Fundamentals of Statistical Signal Processing, Vol. I: Estimation Theory. Prentice Hall, Englewood Cliffs, USA.

[28]Kekatos V, Giannakis GB, 2013. Distributed robust power system state estimation. IEEE Trans Power Syst, 28(2):1617-1626.

[29]Kekatos V, Wang G, Zhu H, et al., 2017. PSSE redux: convex relaxation, decentralized, robust, and dynamic approaches. https://arxiv.org/abs/1708.03981

[30]Kim SJ, Wang G, Giannakis GB, 2014. Online semidefinite programming for power system state estimation. IEEE Conf on Acoustics, Speech, and Signal Process,p.6024-6027.

[31]Kosut O, Jia L, Thomas J, et al., 2011. Malicious data attacks on the smart grid. IEEE Trans Smart Grid, 2(4):645-658.

[32]Kotiuga WW, Vidyasagar M, 1982. Bad data rejection properties of weighted least-absolute-value techniques applied to static state estimation. IEEE Trans Power Appar Syst, 101(4):844-853.

[33]Kreutz-Delgado K, 2009. The complex gradient operator and the CR-calculus. https://arxiv.org/abs/0906.4835

[34]Lewis AS, Wright SJ, 2016. A proximal method for composite minimization. Math Programm, 158(1-2):501-546.

[35]Liu Y, Ning P, Reiter MK, 2011. False data injection attacks against state estimation in electric power grids. ACM Trans Inform Syst Sec, 14(1):1-33.

[36]Lu C, Teng J, Liu WH, 1995. Distribution system state estimation. IEEE Trans Power Syst, 10(1):229-240.

[37]Mehanna O, Huang K, Gopalakrishnan B, et al., 2015. Feasible point pursuit and successive approximation of non-convex QCQPs. IEEE Signal Process Lett, 22(7):804-808.

[38]Mili L, Cheniae MG, Rousseeuw PJ, 1994. Robust state estimation of electric power systems. IEEE Trans Circ Syst I Fundam Theory Appl, 41(5):349-358.

[39]Monticelli A, 2000. Electric power system state estimation. Proc IEEE, 88(2):262-282.

[40]Nesterov Y, 2013. Introductory Lectures on Convex Optimization: a Basic Course. Springer Science & Business Media, Boston, USA.

[41]Pardalos PM, Vavasis SA, 1991. Quadratic programming with one negative eigenvalue is NP-hard. J Glob Optim, 1(1):15-22.

[42]Park J, Boyd S, 2017. General heuristics for nonconvex quadratically constrained quadratic programming. https://arxiv.org/abs/1703.07870

[43]Saad Y, 2003. Iterative Methods for Sparse Linear Systems (2nd Ed.). Society for Industrial and Applied Mathematics, Philadelphia, USA.

[44]Schweppe FC, Wildes J, Rom D, 1970. Power system static state estimation: parts I, II, and III. IEEE Trans Power Appar Syst, 89(1):120-135.

[45]Singh R, Pal B, Jabr R, 2009. Choice of estimator for distribution system state estimation. IET Gener Transm Distrib, 3(7):666-678.

[46]Stoica P, Marzetta TL, 2001. Parameter estimation problems with singular information matrices. IEEE Trans Signal Process, 49(1):87-90.

[47]Wang G, Kim SJ, Giannakis GB, 2014. Moving-horizon dynamic power system state estimation using semidefinite relaxation. IEEE PES General Meeting & Conf Exposition, p.1-5.

[48]Wang G, Zamzam AS, Giannakis GB, et al., 2016. Power system state estimation via feasible point pursuit. IEEE Global Conf Signal and Information Process, p.773-777.

[49]Wang G, Giannakis GB, Chen J, 2017. Robust and scalable power system state estimation via composite optimization. https://arxiv.org/abs/1708.06013

[50]Wang G, Giannakis GB, Saad Y, et al., 2018a. Phase retrieval via reweighted amplitude flow. IEEE Trans Signal Process, 66(11):2818-2833.

[51]Wang G, Zamzam AS, Giannakis GB, et al., 2018b. Power system state estimation via feasible point pursuit: algorithms and Cramér-Rao bound. IEEE Trans Signal Process, 66(6):1649-1658.

[52]Wang G, Zhu H, Giannakis GB, et al., 2018c. Robust power system state estimation from rank-one measurements. IEEE Trans Contr Netw Syst, in press.

[53]Wang G, Giannakis GB, Eldar YC, 2018d. Solving systems of random quadratic equations via truncated amplitude flow. IEEE Trans Inform Theory, 64(2):773-794.

[54]Wang Z, Cui B, Wang J, 2017. A necessary condition for power flow insolvability in power distribution systems with distributed generators. IEEE Trans Power Syst, 32(2):1440-1450.

[55]Wood AJ, Wollenberg BF, 1996. Power Generation, Operation, and Control (2$^rm nd$ Ed.). Wiley & Sons, New York, USA.

[56]Wulf WA, 2000. Great achievements and grand challenges. Nat Acad Eng, 30(1):5-10.

[57]Zamzam AS, Fu X, Sidiropoulos ND, 2018. Data-driven learning-based optimization for distribution system state estimation. https://arxiv.org/abs/1807.01671

[58]Zhang L, Wang G, Giannakis GB, 2017. Going beyond linear dependencies to unveil connectivity of meshed grids. IEEE 7th Workshop on Computational Advances in Multi-sensor Adaptive Processing, p.1-5.

[59]Zhang L, Wang G, Giannakis GB, 2018a. Real-time power system state estimation via deep unrolled neural networks. IEEE Global Conf on Signal and Information Processing, in press.

[60]Zhang L, Wang G, Giannakis GB, 2018b. Real-time power system state estimation and forecasting via deep neural networks. https://arxiv.org/abs/1811.06146

[61]Zhang L, Wang G, Giannakis GB, 2019. Power system state forecasting via deep recurrent neural networks. IEEE Conf on Acoustics, Speech, and Signal Process, in press.

[62]Zhu H, Giannakis GB, 2011. Estimating the state of AC power systems using semidefinite programming. North American Power Symp, p.1-7.

[63]Zhu H, Giannakis GB, 2012. Robust power system state estimation for the nonlinear AC flow model. North American Power Symp, p.1-6.

[64]Zhu H, Giannakis GB, 2014. Power system nonlinear state estimation using distributed semidefinite programming. IEEE J Sel Top Signal Process, 8(6):1039-1050.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE