Full Text:   <7535>

Summary:  <432>

CLC number: 

On-line Access: 2022-10-24

Received: 2022-03-27

Revision Accepted: 2022-06-21

Crosschecked: 2022-10-24

Cited: 0

Clicked: 2097

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Le CHANG

https://orcid.org/0000-0002-4641-5792

-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering  2022 Vol.23 No.10 P.1562-1567

http://doi.org/10.1631/FITEE.2200119


Zero ground clearance dual antenna pair for metal-cased fifth-generation multiple input multiple output smartphone


Author(s):  Le CHANG, Wenbao HE, Xiaomin CHEN, Xiaoxue TAN, Juan CHEN, Kai KANG, Yang YANG

Affiliation(s):  School of Information and Communications Engineering, Xian Jiaotong University, Xian 710049, China; more

Corresponding email(s):   changle4015@126.com

Key Words: 


Le CHANG, Wenbao HE, Xiaomin CHEN, Xiaoxue TAN, Juan CHEN, Kai KANG, Yang YANG. Zero ground clearance dual antenna pair for metal-cased fifth-generation multiple input multiple output smartphone[J]. Frontiers of Information Technology & Electronic Engineering, 2022, 23(10): 1562-1567.

@article{title="Zero ground clearance dual antenna pair for metal-cased fifth-generation multiple input multiple output smartphone",
author="Le CHANG, Wenbao HE, Xiaomin CHEN, Xiaoxue TAN, Juan CHEN, Kai KANG, Yang YANG",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="23",
number="10",
pages="1562-1567",
year="2022",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.2200119"
}

%0 Journal Article
%T Zero ground clearance dual antenna pair for metal-cased fifth-generation multiple input multiple output smartphone
%A Le CHANG
%A Wenbao HE
%A Xiaomin CHEN
%A Xiaoxue TAN
%A Juan CHEN
%A Kai KANG
%A Yang YANG
%J Frontiers of Information Technology & Electronic Engineering
%V 23
%N 10
%P 1562-1567
%@ 2095-9184
%D 2022
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.2200119

TY - JOUR
T1 - Zero ground clearance dual antenna pair for metal-cased fifth-generation multiple input multiple output smartphone
A1 - Le CHANG
A1 - Wenbao HE
A1 - Xiaomin CHEN
A1 - Xiaoxue TAN
A1 - Juan CHEN
A1 - Kai KANG
A1 - Yang YANG
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 23
IS - 10
SP - 1562
EP - 1567
%@ 2095-9184
Y1 - 2022
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.2200119


Abstract: 
The fifth-generation (5G) era has already arrived and many applications are prospering. The multiple input multiple output (MIMO) system is the key to enhancing channel capacity for both the fourthgeneration (4G) wireless communication and 5G systems. For a smartphone, the most challenging task for antenna engineers is to accommodate the numerous 4G and 5G multi-port antennas while avoiding mutual coupling problems (Li Y et al., 2009, 2012; Hong, 2017; Sharawi et al., 2017). Therefore, implementing multiple antennas within a small space is a worthwhile topic to study, especially for antennas operating at the same frequency.

适用于全金属外壳5G多输入多输出智能终端的零净空正交同频天线对

常乐1,贺文宝1,陈小民2,檀笑雪1,陈娟1,康凯3,杨阳4
1西安交通大学信息与通信工程学院,中国西安市,710049
2内蒙古大学电子信息工程学院,中国呼和浩特市,010021
3中国电子产业工程有限公司欧亚部,中国北京市,100846
4中国司法大数据研究院政企事业部,中国北京市,100043
摘要:本文首次提出零净空天线对,可适用于全金属外壳第五代移动通信技术(5G)多输入多输出(MIMO)智能终端。该天线对是金属边框上的T形槽结构,可以看作由两个对称的口对口开口槽构成。该结构存在两种工作于半波模式的极化正交特征模:对于同相电流环模式,两个开口槽相位相反,可以通过在缝隙处建立电位差来激励;对于槽模式,两个开口槽相位相同,可由一个对称馈电网络来激励。得益于T形槽位于侧边边框,不需要天线净空,非常适用于现代全面屏智能终端,终端后盖可采用金属材质,适用于全金属外壳终端。本文加工了一个Sub-6 GHz的四天线阵列来验证其可行性。在3.4–3.6GHz,两对天线对的隔离性均优于16.9 dB,任意两个天线之间的包络相关系数(ECC)均小于0.13,两种模式的总效率范围分别为43.5%–61.9%和40.5%–53.5%。

关键词:天线对;第五代移动通信技术(5G);Sub-6 GHz;极化正交;智能终端;智能手机;零净空;全金属外壳;多输入多输出(MIMO)

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Chang L, Yu YF, Wei KP, et al., 2019. Polarization-orthogonal co-frequency dual antenna pair suitable for 5G MIMO smartphone with metallic bezels. IEEE Trans Antenn Propag, 67(8):5212-5220.

[2]Chang L, Yu YF, Wei KP, et al., 2020. Orthogonally polarized dual antenna pair with high isolation and balanced high performance for 5G MIMO smartphone. IEEE Trans Antenn Propag, 68(5):3487-3495.

[3]Chang L, Zhang GL, Wang HY, 2021. Dual-band antenna pair with lumped filters for 5G MIMO terminals. IEEE Trans Antenn Propag, 69(9):5413-5423.

[4]Chen QG, Lin HW, Wang JP, et al., 2019. Single ring slot-based antennas for metal-rimmed 4G/5G smartphones. IEEE Trans Antenn Propag, 67(3):1476-1487.

[5]Deng CZ, Xu Z, Ren AD, et al., 2019. TCM-based bezel antenna design with small ground clearance for mobile terminals. IEEE Trans Antenn Propag, 67(2):745-754.

[6]Han CZ, Liao SM, Hong KD, et al., 2019. A frequency-reconfigurable antenna with 1-mm nonground portion for metal-frame and full-display screen handset applications using mode control method. IEEE Access, 7:48037-48045.

[7]Hong W, 2017. Solving the 5G mobile antenna puzzle: assessing future directions for the 5G mobile antenna paradigm shift. IEEE Microw Mag, 18(7):86-102.

[8]Huang DW, Du ZW, Wang Y, 2019. Eight-band antenna for full-screen metal frame LTE mobile phones. IEEE Trans Antenn Propag, 67(3):1527-1534.

[9]Li MY, Xu ZQ, Ban YL, et al., 2017a. Eight-port orthogonally dual-polarised MIMO antennas using loop structures for 5G smartphone. IET Microw Antenn Propag, 11(12):1810-1816.

[10]Li MY, Ban YL, Xu ZQ, et al., 2017b. Tri-polarized 12-antenna MIMO array for future 5G smartphone applications. IEEE Access, 6:6160-6170.

[11]Li Y, Zhang ZJ, Chen WH, et al., 2009. A quadband antenna with reconfigurable feedings. IEEE Antenn Wirel Propag Lett, 8:1069-1071.

[12]Li Y, Zhang ZJ, Chen WH, et al., 2010a. A dual-polarization slot antenna using a compact CPW feeding structure. IEEE Antenn Wirel Propag Lett, 9:191-194.

[13]Li Y, Zhang ZJ, Chen WH, et al., 2010b. A switchable matching circuit for compact wideband antenna designs. IEEE Trans Antenn Propag, 58:3450-3457.

[14]Li Y, Zhang ZJ, Feng ZH, et al., 2011. Dual-mode loop antenna with compact feed for polarization diversity. IEEE Antenn Wirel Propag Lett, 10:95-98.

[15]Li Y, Zhang ZJ, Zheng JF, et al., 2012. A compact hepta-band loop-inverted F reconfigurable antenna for mobile phone. IEEE Trans Antenn Propag, 60(1):389-392.

[16]Sharawi MS, Ikram M, Shamim A, 2017. A two concentric slot loop based connected array MIMO antenna system for 4G/5G terminals. IEEE Trans Antenn Propag, 65(12):6679-6686.

[17]Sun LB, Feng HG, Li Y, et al., 2018. Compact 5G MIMO mobile phone antennas with tightly arranged orthogonal-mode pairs. IEEE Trans Antenn Propag, 66(11):6364-6369.

[18]Wong KL, Tsai CY, 2016. IFA-based metal-frame antenna without ground clearance for the LTE/WWAN operation in the metal-casing tablet computer. IEEE Trans Antenn Propag, 64(1):53-60.

[19]Wong KL, Tsai CY, 2017. Half-loop frame antenna for the LTE metal-casing tablet device. IEEE Trans Antenn Propag, 65(1):71-81.

[20]Wong KL, Tsai CY, Li WY, 2017a. Integrated yet decoupled dual antennas with inherent decoupling structures for 2.4/5.2/5.8-GHz WLAN MIMO operation in the smartphone. Microw Opt Technol Lett, 59(9):2235-2241.

[21]Wong KL, Lin BW, Li BWY, 2017b. Dual-band dual inverted-F/loop antennas as a compact decoupled building block for forming eight 3.5/5.8-GHz MIMO antennas in the future smartphone. Microw Opt Technol Lett, 59(11):2715-2721.

[22]Wong KL, Tsai CY, Lu JY, 2017c. Two asymmetrically mirrored gap-coupled loop antennas as a compact building block for eight-antenna MIMO array in the future smartphone. IEEE Trans Antenn Propag, 65(4):1765-1778.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE