Full Text:   <1075>

Summary:  <1131>

CLC number: O231

On-line Access: 2020-03-04

Received: 2019-08-22

Revision Accepted: 2019-10-29

Crosschecked: 2019-11-15

Cited: 0

Clicked: 2788

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Yi-feng Li

http://orcid.org/0000-0001-9252-4853

Jian-dong Zhu

http://orcid.org/0000-0003-1416-1051

-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering  2020 Vol.21 No.2 P.304-315

http://doi.org/10.1631/FITEE.1900422


Cascading decomposition of Boolean control networks: a graph-theoretical method


Author(s):  Yi-feng Li, Jian-dong Zhu

Affiliation(s):  Institute of Mathematics, School of Mathematical Sciences, Nanjing Normal University, Nanjing 210023, China

Corresponding email(s):   liyifeng010@126.com, zhujiandong@njnu.edu.cn

Key Words:  Boolean control networks, Semi-tensor product, Cascading decomposition, Graphic condition


Yi-feng Li, Jian-dong Zhu. Cascading decomposition of Boolean control networks: a graph-theoretical method[J]. Frontiers of Information Technology & Electronic Engineering, 2020, 21(2): 304-315.

@article{title="Cascading decomposition of Boolean control networks: a graph-theoretical method",
author="Yi-feng Li, Jian-dong Zhu",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="21",
number="2",
pages="304-315",
year="2020",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.1900422"
}

%0 Journal Article
%T Cascading decomposition of Boolean control networks: a graph-theoretical method
%A Yi-feng Li
%A Jian-dong Zhu
%J Frontiers of Information Technology & Electronic Engineering
%V 21
%N 2
%P 304-315
%@ 2095-9184
%D 2020
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.1900422

TY - JOUR
T1 - Cascading decomposition of Boolean control networks: a graph-theoretical method
A1 - Yi-feng Li
A1 - Jian-dong Zhu
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 21
IS - 2
SP - 304
EP - 315
%@ 2095-9184
Y1 - 2020
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.1900422


Abstract: 
Two types of cascading decomposition problems of boolean control networks are investigated using a graph-theoretical method. A new graphic concept called nested perfect equal vertex partition (NPEVP) is proposed. Based on NPEVP, the necessary and sufficient graphic conditions for solvability of the cascading decomposition problems are obtained. Given the proposed graphic conditions, the logical coordinate transformations are constructively obtained to realize the corresponding cascading decomposition forms. Finally, two illustrative examples are provided to validate the results.

布尔控制网络的级联分解:一种图论方法

李一峰,朱建栋
南京师范大学数学科学学院数学研究所,中国南京市,210023

摘要:采用图论方法研究布尔控制网络的两类级联分解问题。提出嵌套完美等点划分(NPEVP)的概念。基于NPEVP,得到级联分解问题可解的充要图条件。给定提出的图条件,可构造性地得到实现相应级联分解形式的逻辑坐标变换。最后,给出两个实例以验证结论。

关键词:布尔控制网络;半张量积;级联分解;图条件

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Albert R, Othmer HG, 2003. The topology of the regulatory interactions predicts the expression pattern of the segment polarity genes in Drosophila melanogaster. J Theor Biol, 223(1):1-18.

[2]Borruvka O, 1974. Foundations of the Theory of Groupoids and Groups. VEB Deutscher Verlag der Wissenschaften, Berlin, Germany.

[3]Chaves M, Albert R, Sontag ED, 2005. Robustness and fragility of Boolean models for genetic regulatory networks. J Theor Biol, 235(3):431-449.

[4]Cheng DZ, 2011. Disturbance decoupling of Boolean control networks. IEEE Trans Autom Contr, 56(1):2-10.

[5]Cheng DZ, Qi HS, 2009. Controllability and observability of Boolean control networks. Automatica, 45(7):1659-1667.

[6]Cheng DZ, Qi HS, 2010a. A linear representation of dynamics of Boolean networks. IEEE Trans Autom Contr, 55(10):2251-2258.

[7]Cheng DZ, Qi HS, 2010b. State-space analysis of Boolean networks. IEEE Trans Neur Netw, 21(4):584-594.

[8]Cheng DZ, Xu XR, 2013. Bi-decomposition of multi-valued logical functions and its applications. Automatica, 49(7):1979-1985.

[9]Cheng DZ, Li ZQ, Qi HS, 2010. Realization of Boolean control networks. Automatica, 46(1):62-69.

[10]Cheng DZ, Qi HS, Li ZQ, 2011. Analysis and Control of Boolean Networks: a Semi-tensor Product Approach. Springer, London, UK.

[11]Ching WK, Zhang SQ, Ng MK, et al., 2007. An approximation method for solving the steady-state probability distribution of probabilistic Boolean networks. Bioinformatics, 23(12):1511-1518.

[12]Datta A, Choudhary A, Bittner M, 2004. External control in Markovian genetic regulatory networks: the imperfect information case. Bioinformatics, 20(6):924-930.

[13]Farrow C, Heidel J, Maloney J, et al., 2004. Scalar equations for synchronous Boolean networks with biological applications. IEEE Trans Neur Netw, 15(2):348-354.

[14]Fornasini E, Valcher ME, 2013. Observability, reconstructibility and state observers of Boolean control networks. IEEE Trans Autom Contr, 58(6):1390-1401.

[15]Huang S, 2002. Regulation of cellular states in mammalian cells from a genome wide view. Proc Gene Regulations and Metabolism - Postgenomic Computational Approaches, p.181-220.

[16]Huang S, Ingber DE, 2000. Shape-dependent control of cell growth, differentiation, and apoptosis: switching between attractors in cell regulatory networks. Exp Cell Res, 261(1):91-103.

[17]Kauffman SA, 1969. Metabolic stability and epigenesis in randomly constructed genetic nets. J Theor Biol, 22(3):437-467.

[18]Klamt S, Saez-Rodriguez J, Lindquist JA, et al., 2006. A methodology for the structural and functional analysis of signaling and regulatory networks. BMC Bioinform, 7:56.

[19]Laschov D, Margaliot M, 2011. A maximum principle for single-input Boolean control networks. IEEE Trans Autom Contr, 56(4):913-917.

[20]Li FF, Sun JT, 2012. Controllability and optimal control of a temporal Boolean network. Neur Netw, 34:10-17.

[21]Li HT, Wang YZ, 2017. Further results on feedback stabilization control design of Boolean control networks. Automatica, 83:303-308.

[22]Li HT, Xie LH, Wang YZ, 2017. Output regulation of Boolean control networks. IEEE Trans Autom Contr, 62(6):2993-2998.

[23]Li R, Yang M, Chu TG, 2013. State feedback stabilization for Boolean control networks. IEEE Trans Autom Contr, 58(7):1853-1857.

[24]Li YF, Zhu JD, 2019. On disturbance decoupling problem of Boolean control network. Asian J Contr, in press.

[25]Liu Y, Chen HW, Lu JQ, et al., 2015. Controllability of probabilistic Boolean control networks based on transition probability matrices. Automatica, 52:340-345.

[26]Liu Y, Li BW, Chen HW, et al., 2017a. Function perturbations on singular Boolean networks. Automatica, 84:36-42.

[27]Liu Y, Li BW, Lu JQ, et al., 2017b. Pinning control for the disturbance decoupling problem of Boolean networks. IEEE Trans Autom Contr, 62(12):6595-6601.

[28]Lu JQ, Zhong J, Huang C, et al., 2016. On pinning controllability of Boolean control networks. IEEE Trans Autom Contr, 61(6):1658-1663.

[29]Lu JQ, Sun LJ, Liu Y, et al., 2018. Stabilization of Boolean control networks under aperiodic sampled-data control. SIAM J Contr Optim, 56(6):4385-4404.

[30]Meng M, Lam J, Feng JE, et al., 2016. l1-gain analysis and model reduction problem for Boolean control networks. Inform Sci, 348:68-83.

[31]Potruvcek R, 2014. Construction of the smallest common coarser of two and three set partitions. Anal Univ Ovid Const Ser Matem, 22(1):237-246.

[32]Wonham WM, 1974. Linear Multivariable Control: a Geometric Approach. Springer-Verlag, Berlin, Germany.

[33]Wu YH, Shen TL, 2015. An algebraic expression of finite horizon optimal control algorithm for stochastic logical dynamical systems. Syst Contr Lett, 82:108-114.

[34]Yu YY, Feng JE, Pan JF, et al., 2019. Block decoupling of Boolean control networks. IEEE Trans Autom Contr, 64(8):3129-3140.

[35]Zhao Y, Li ZQ, Cheng DZ, 2011. Optimal control of logical control networks. IEEE Trans Autom Contr, 56(8):1766-1776.

[36]Zhao Y, Kim J, Filippone M, 2013. Aggregation algorithm towards large-scale Boolean network analysis. IEEE Trans Autom Contr, 58(8):1976-1985.

[37]Zou YL, Zhu JD, 2014. System decomposition with respect to inputs for Boolean control networks. Automatica, 50(4):1304-1309.

[38]Zou YL, Zhu JD, 2015. Kalman decomposition for Boolean control networks. Automatica, 54:65-71.

[39]Zou YL, Zhu JD, 2017. Graph theory methods for decomposition w.r.t. outputs of Boolean control networks. J Syst Sci Compl, 30(3):519-534.

[40]Zou YL, Zhu JD, Liu YR, 2018. Cascading state-space decomposition of Boolean control networks. Proc 37th Chinese Control Conf, p.6326-6331.

[41]Zou YL, Zhu JD, Liu YR, 2019. Cascading state-space decomposition of Boolean control networks by nested method. J Franklin Inst, 356(16):10015-10030.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2022 Journal of Zhejiang University-SCIENCE