CLC number: TN82
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2020-01-06
Cited: 0
Clicked: 6353
Citations: Bibtex RefMan EndNote GB/T7714
https://orcid.org/0000-0001-6836-0545
https://orcid.org/0000-0003-4408-3031
Kai-lai Wu, Yuan Yao, Xiao-he Cheng, Jun-sheng Yu, Tao Yu, Xiao-dong Chen. Analysis and design of novel wideband and high efficiency millimeter-wave antenna arrays for 60-GHz applications[J]. Frontiers of Information Technology & Electronic Engineering, 2020, 21(1): 128-143.
@article{title="Analysis and design of novel wideband and high efficiency millimeter-wave antenna arrays for 60-GHz applications",
author="Kai-lai Wu, Yuan Yao, Xiao-he Cheng, Jun-sheng Yu, Tao Yu, Xiao-dong Chen",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="21",
number="1",
pages="128-143",
year="2020",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.1900461"
}
%0 Journal Article
%T Analysis and design of novel wideband and high efficiency millimeter-wave antenna arrays for 60-GHz applications
%A Kai-lai Wu
%A Yuan Yao
%A Xiao-he Cheng
%A Jun-sheng Yu
%A Tao Yu
%A Xiao-dong Chen
%J Frontiers of Information Technology & Electronic Engineering
%V 21
%N 1
%P 128-143
%@ 2095-9184
%D 2020
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.1900461
TY - JOUR
T1 - Analysis and design of novel wideband and high efficiency millimeter-wave antenna arrays for 60-GHz applications
A1 - Kai-lai Wu
A1 - Yuan Yao
A1 - Xiao-he Cheng
A1 - Jun-sheng Yu
A1 - Tao Yu
A1 - Xiao-dong Chen
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 21
IS - 1
SP - 128
EP - 143
%@ 2095-9184
Y1 - 2020
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.1900461
Abstract: A type of millimeter-wave antenna array with flexible design is proposed for a variety of applications at 60 GHz. The antenna array can be adjusted to be linearly or circularly polarized by simply changing the radiation part of the antenna array. High gain, wideband, and high radiation efficiency characteristics can be achieved by adopting a low insertion loss feeding network and broadband antenna elements. For the linearly polarized antenna array, simulation results show that the impedance bandwidth of the 2×2 antenna subarray reaches 21.6%, while the maximum gain achieves 15.1 dBi and has a fluctuation of less than 0.4 dBi within the working bandwidth. Simulation results of the 8×8 linearly polarized antenna array show a bandwidth of 21.6% and a gain of (26.1±1) dBi with an antenna efficiency of more than 80%. For the 8×8 circularly polarized antenna array, simulation results show that an impedance bandwidth of 18.2% and an axial ratio (AR) bandwidth of 13.3% are obtained. Gain and efficiency of up to 27.6 dBi and 80% are achieved, respectively. A prototype of antenna array is fabricated, and results are compared and analyzed.
[1]Akbari M, Farahbakhsh A, Sebak AR, 2018. Ridge gap waveguide multilevel sequential feeding network for high-gain circularly polarized array antenna. IEEE Trans Antenn Propag, 67(1):251-259.
[2]Du M, Dong YL, Xu J, et al., 2017. 35-GHz wideband circularly polarized patch array on LTCC. IEEE Trans Antenn Propag, 65(6):3235-3240.
[3]Ferrando-Rocher M, Herranz-Herruzo JI, Valero-Nogueira A, et al., 2018. Single-layer circularly-polarized Ka-band antenna using gap waveguide technology. IEEE Trans Antenn Propag, 66(8):3837-3845.
[4]Hao ZC, Li BW, 2017. Developing wideband planar millimeter-wave array antenna using compact magneto- electric dipoles. IEEE Antenn Wirel Propag Lett, 16: 2102-2105.
[5]Irie H, Hirokawa J, 2017. Perpendicular-corporate feed in three-layered parallel-plate radiating-slot array. IEEE Trans Antenn Propag, 65(11):5829-5836.
[6]Kildal PS, Alfonso E, Valero-Nogueira A, et al., 2008. Local metamaterial-based waveguides in gaps between parallel metal plates. IEEE Antenn Wirel Propag Lett, 8:84-87.
[7]Lee B, Yoon Y, 2017. Low-profile, low-cost, broadband millimeter-wave antenna array for high-data-rate WPAN systems. IEEE Antenn Wirel Propag Lett, 16:1957-1960.
[8]Li YJ, Luk KM, 2016. A 60-GHz wideband circularly polarized aperture-coupled magneto-electric dipole antenna array. IEEE Trans Antenn Propag, 64(4):1325-1333.
[9]Liu JL, Vosoogh A, Zaman AU, et al., 2017. Design and fabrication of a high-gain 60-GHz cavity-backed slot antenna array fed by inverted microstrip gap waveguide. IEEE Trans Antenn Propag, 65(4):2117-2122.
[10]Liu JL, Vosoogh A, Zaman AU, et al., 2018. A slot array antenna with single-layered corporate-feed based on ridge gap waveguide in the 60 GHz band. IEEE Trans Antenn Propag, 67(3):1650-1658.
[11]Miura Y, Hirokawa J, Ando M, et al., 2011. Double-layer full-corporate-feed hollow-waveguide slot array antenna in the 60-GHz band. IEEE Trans Antenn Propag, 59(8):2844-2851.
[12]Parshin VV, Tretyakov MY, Shanin VN, et al., 2001. Modern technique for absorption investigation in atmosphere and condensed media in the MM wavelength range. 4th Int Kharkov Symp on Physics and Engineering of Millimeter and Sub-millimeter Waves, p.79-84.
[13]Rappaport TS, Murdock JN, Gutierrez F, 2011. State of the art in 60-GHz integrated circuits and systems for wireless communications. Proc IEEE, 99(8):1390-1436.
[14]Rappaport TS, Sun S, Mayzus R, et al., 2013. Millimeter wave mobile communications for 5G cellular: it will work! IEEE Access, 1:335-349.
[15]Tomura T, Miura Y, Zhang M, et al., 2012. A 45° linearly polarized hollow-waveguide corporate-feed slot array antenna in the 60-GHz band. IEEE Trans Antenn Propag, 60(8):3640-3646.
[16]Yamamoto T, Zhang M, Hirokawa J, et al., 2014. Wideband design of a circularly-polarized plate-laminated waveguide slot array antenna. Int Symp on Antennas and Propagation, p.13-14.
[17]Zaman AU, Kildal PS, 2016. Gap waveguides. In: Chen Z (Ed.), Handbook of Antenna Technologies. Springer, Singapore, p.3273-3347.
[18]Zarifi D, Farahbakhsh A, Zaman AU, et al., 2016. Design and fabrication of a high-gain 60-GHz corrugated slot antenna array with ridge gap waveguide distribution layer. IEEE Trans Antenn Propag, 64(7):2905-2913.
[19]Zarifi D, Farahbakhsh A, Zaman AU, 2017. A gap wave-guide-fed wideband patch antenna array for 60-GHz applications. IEEE Trans Antenn Propag, 65(9):4875-4879.
[20]Zhu JF, Li SF, Liao SW, et al., 2017. High-gain series-fed planar aperture antenna array. IEEE Antenn Wirel Propag Lett, 16:2750-2754.
Open peer comments: Debate/Discuss/Question/Opinion
<1>