Full Text:   <1858>

Summary:  <155>

CLC number: TN433

On-line Access: 2022-02-28

Received: 2020-08-11

Revision Accepted: 2022-04-22

Crosschecked: 2021-01-18

Cited: 0

Clicked: 3335

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Sheng LIU

https://orcid.org/0000-0001-7695-3180

Menglian ZHAO

https://orcid.org/0000-0002-2500-2892

-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering  2022 Vol.23 No.2 P.317-327

http://doi.org/10.1631/FITEE.2000404


A large-current, highly integrated switched-capacitor divider with a dual-branch interleaved topology and light load efficiency improvement


Author(s):  Sheng LIU, Menglian ZHAO, Zhao YANG, Haonan WU, Xiaobo WU

Affiliation(s):  College of Electrical Engineering, Zhejiang University, Hangzhou 310027, China; more

Corresponding email(s):   liusheng_0827@zju.edu.cn, zhaoml@zju.edu.cn

Key Words:  Switched-capacitor converter, Dual branch, Integrated circuit, Bootstrap gate driver


Sheng LIU, Menglian ZHAO, Zhao YANG, Haonan WU, Xiaobo WU. A large-current, highly integrated switched-capacitor divider with a dual-branch interleaved topology and light load efficiency improvement[J]. Frontiers of Information Technology & Electronic Engineering, 2022, 23(2): 317-327.

@article{title="A large-current, highly integrated switched-capacitor divider with a dual-branch interleaved topology and light load efficiency improvement",
author="Sheng LIU, Menglian ZHAO, Zhao YANG, Haonan WU, Xiaobo WU",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="23",
number="2",
pages="317-327",
year="2022",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.2000404"
}

%0 Journal Article
%T A large-current, highly integrated switched-capacitor divider with a dual-branch interleaved topology and light load efficiency improvement
%A Sheng LIU
%A Menglian ZHAO
%A Zhao YANG
%A Haonan WU
%A Xiaobo WU
%J Frontiers of Information Technology & Electronic Engineering
%V 23
%N 2
%P 317-327
%@ 2095-9184
%D 2022
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.2000404

TY - JOUR
T1 - A large-current, highly integrated switched-capacitor divider with a dual-branch interleaved topology and light load efficiency improvement
A1 - Sheng LIU
A1 - Menglian ZHAO
A1 - Zhao YANG
A1 - Haonan WU
A1 - Xiaobo WU
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 23
IS - 2
SP - 317
EP - 327
%@ 2095-9184
Y1 - 2022
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.2000404


Abstract: 
Because it is magnet-free and can achieve a high integration level, the switched-capacitor (SC) converter acting as a direct current transformer has many promising applications in modern electronics. However, designing an SC converter with large current capability and high power efficiency is still challenging. This paper proposes a dual-branch SC voltage divider and presents its integrated circuit (IC) implementation. The designed SC converter is capable of driving large current load, thus widening the use of SC converters to high-power applications. This SC converter has a constant conversion ratio of 1/2 and its dual-branch interleaved operation ensures a continuous input current. An effective on-chip gate-driving method using a capacitively coupled floating-voltage level shifter is proposed to drive the all-NMOS power train. Due to the self-powered structure, the flying capacitor itself is also a bootstrap capacitor for gate driving and thus reduces the number of needed components. A digital frequency modulation method is adopted and the switching frequency decreases automatically at light load to improve light load efficiency. The converter IC is implemented using a 180 nm triple-well BCD process. Experimental results verify the effectiveness of the dual-branch interleaved operation and the self-powered gate-driving method. The proposed SC divider can drive up to 4 A load current with 5–12 V input voltage and its power efficiency is as high as 96.5%. At light load, using the proposed optimization method, the power efficiency is improved by 30%.

具有双支路交错拓扑结构和轻载效率优化模式的大电流、高集成度开关电容分压器

刘胜1,赵梦恋2,杨朝2,吴皓楠2,吴晓波1
1浙江大学电气工程学院,中国杭州市,310027
2浙江大学信息与电子工程学院,中国杭州市,310027
摘要:由于无磁且容易实现高集成度,开关电容(SC)变换器作为一种直流变压器在现代电子领域具有广泛应用前景。然而,设计具有大电流和高功率的SC变换器仍面临挑战。本文提出一种双支路SC分压器拓扑,并通过集成电路(IC)得以实现。所设计SC变换器能驱动大电流负载,将其使用范围扩展至大功率应用场合。该SC变换器具有1/2的恒定变换比,其双支路交错操作方式可确保输入电流的连续性。此外,提出一种使用电容耦合型浮动电压电平转换器的片上栅极驱动方法有效驱动全NMOS功率链。通过自供电结构,飞电容器本身也是用于栅极驱动的自举电容器,从而减少所需元器件数量。采用数字调制方式,在轻载时自动降低开关频率以提高效率。所设计SC变换器IC使用180 nm三阱BCD工艺制造。实验结果证明了所提双支路交错操作方式和自供电栅极驱动方法的有效性。所设计SC变换器可在5至12V的输入电压下驱动高达4A的负载电流,功率效率高达96.5%。在轻负载条件下,使用所提优化方法,电源效率提高了30%。

关键词:开关电容变换器;双支路;集成电路;自举栅极驱动器

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Andersen TM, Krismer F, Kolar JW, et al., 2017. A 10 W on-chip switched capacitor voltage regulator with feedforward regulation capability for granular microprocessor power delivery. IEEE Trans Power Electron, 32(1):378-393. doi: 10.1109/TPEL.2016.2530745

[2]DA9318, 2017. DA9318 Direct Charging Reference Board. Germany: Dialog Semiconductor. https://www.manualslib.com/manual/1634181/Dialog-Da9318.html

[3]Fardahar SM, Sabahi M, 2020. New expandable switched-capacitor/switched-inductor high-voltage conversion ratio bidirectional DC-DC converter. IEEE Trans Power Electron, 35(3):2480-2487. doi: 10.1109/TPEL.2019.2932325

[4]Fei C, Ahmed MH, Lee FC, et al., 2017. Two-stage 48 V–12 V/6 V–1.8 V voltage regulator module with dynamic bus voltage control for light-load efficiency improvement. IEEE Trans Power Electron, 32(7):5628-5636. doi: 10.1109/TPEL.2016.2605579

[5]Jawalikar P, Patle N, Sahoo BD, 2020. Time-domain modeling and analysis of switched-capacitor converters. IEEE Trans Power Electron, 35(8):8276-8286. doi: 10.1109/TPEL.2020.2964263

[6]Jong O, 2019. Multi Resonant Switched-Capacitor Converters. MS Thesis, Virginia Polytechnic Institute and State University, Blacksburg, USA.

[7]Lehmann T, 2014. Design of fast low-power floating high-voltage level-shifters. Electron Lett, 50(3):202-204. doi: 10.1049/el.2013.2270

[8]Liu WL, Wang Z, Wang G, et al., 2020. Switched-capacitor-convertors based on fractal design for output power management of triboelectric nanogenerator. Nat Commun, 11(1):1883. doi: 10.1038/s41467-020-15373-y

[9]Liu ZD, Cong L, Lee H, 2015. Design of on-chip gate drivers with power-efficient high-speed level shifting and dynamic timing control for high-voltage synchronous switching power converters. IEEE J Sol-State Circ, 50(6):1463-1477. doi: 10.1109/JSSC.2015.2422075

[10]Luo ZC, Ker MD, Cheng WH, et al., 2017. Regulated charge pump with new clocking scheme for smoothing the charging current in low voltage CMOS process. IEEE Trans Circ Syst I Reg Pap, 64(3):528-536. doi: 10.1109/TCSI.2016.2619693

[11]Meyvaert H, Piqué GV, Karadi R, et al., 2015. 20.1 A light-load-efficient 11/1 switched-capacitor DC-DC converter with 94.7% efficiency while delivering 100 mW at 3.3V. Proc IEEE Int Solid-State Circuits Conf, p.1-3. doi: 10.1109/ISSCC.2015.7063074

[12]Moghe Y, Lehmann T, Piessens T, 2011. Nanosecond delay floating high voltage level shifters in a 0.35 μm HV-CMOS technology. IEEE J Sol-State Circ, 46(2):485-497. doi: 10.1109/JSSC.2010.2091322

[13]Mostacciuolo E, Vasca F, Baccari S, 2018. Differential algebraic equations and averaged models for switched capacitor converters with state jumps. IEEE Trans Power Electron, 33(4):3472-3483. doi: 10.1109/TPEL.2017.2702389

[14]Palumbo G, Pappalardo D, 2010. Charge pump circuits: an overview on design strategies and topologies. IEEE Circ Syst Mag, 10(1):31-45. doi: 10.1109/MCAS.2009.935695

[15]Sanders SR, Alon E, Le HP, et al., 2013. The road to fully integrated DC-DC conversion via the switched-capacitor approach. IEEE Trans Power Electron, 28(9):4146-4155. doi: 10.1109/TPEL.2012.2235084

[16]Schaef C, Stauth JT, 2018. A highly integrated series—parallel switched-capacitor converter with 12 V input and quasi-resonant voltage-mode regulation. IEEE J Emerg Sel Top Power Electron, 6(2):456-464. doi: 10.1109/JESTPE.2017.2762083

[17]Schaef C, Rentmeister J, Stauth JT, 2018. Multimode operation of resonant and hybrid switched-capacitor topologies. IEEE Trans Power Electron, 33(12):10512-10523. doi: 10.1109/TPEL.2018.2806927

[18]Seeman MD, Sanders SR, 2008. Analysis and optimization of switched-capacitor DC–DC converters. IEEE Trans Power Electron, 23(2):841-851. doi: 10.1109/TPEL.2007.915182

[19]Souvignet T, Allard B, Lin-Shi X, 2015. Sampled-data modeling of switched-capacitor voltage regulator with frequency-modulation control. IEEE Trans Circ Syst I Reg Pap, 62(4):957-966. doi: 10.1109/TCSI.2015.2399025

[20]Xu M, Sun J, Lee FC, 2006. Voltage divider and its application in the two-stage power architecture. Proc Twenty-First Annual IEEE Applied Power Electronics Conf and Exposition, Article 7. doi: 10.1109/APEC.2006.1620584

[21]Yuan B, Ying J, Ng WT, et al., 2020. A high-voltage DC–DC buck converter with dynamic level shifter for bootstrapped high-side gate driver and diode emulator. IEEE Trans Power Electron, 35(7):7295-7304. doi: 10.1109/TPEL.2019.2955310

[22]Zhang F, Du L, Peng FZ, et al., 2008. A new design method for high-power high-efficiency switched-capacitor DC–DC converters. IEEE Trans Power Electron, 23(2):832-840. doi: 10.1109/TPEL.2007.915043

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2022 Journal of Zhejiang University-SCIENCE