Full Text:   <2098>

Summary:  <1599>

CLC number: TN828.5

On-line Access: 2020-02-27

Received: 2019-09-16

Revision Accepted: 2019-12-22

Crosschecked: 2020-01-18

Cited: 0

Clicked: 6042

Citations:  Bibtex RefMan EndNote GB/T7714


Gang Zhao


Yong-chang Jiao


-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering  2020 Vol.21 No.1 P.159-173


Optimal design of a large dual-polarization microstrip reflectarray with China-coverage patterns for satellite communications

Author(s):  Gang Zhao, Yong-chang Jiao, Guan-tao Chen

Affiliation(s):  National Key Laboratory of Antennas and Microwave Technology, Xidian University, Xi’an 710071, China

Corresponding email(s):   gangzhao@mail.xidian.edu.cn, ychjiao@xidian.edu.cn, gtchen@stu.xidian.edu.cn

Key Words:  Reflectarray, Dual-polarization, Shaped beam, Phase-only synthesis

Gang Zhao, Yong-chang Jiao, Guan-tao Chen. Optimal design of a large dual-polarization microstrip reflectarray with China-coverage patterns for satellite communications[J]. Frontiers of Information Technology & Electronic Engineering, 2020, 21(1): 159-173.

@article{title="Optimal design of a large dual-polarization microstrip reflectarray with China-coverage patterns for satellite communications",
author="Gang Zhao, Yong-chang Jiao, Guan-tao Chen",
journal="Frontiers of Information Technology & Electronic Engineering",
publisher="Zhejiang University Press & Springer",

%0 Journal Article
%T Optimal design of a large dual-polarization microstrip reflectarray with China-coverage patterns for satellite communications
%A Gang Zhao
%A Yong-chang Jiao
%A Guan-tao Chen
%J Frontiers of Information Technology & Electronic Engineering
%V 21
%N 1
%P 159-173
%@ 2095-9184
%D 2020
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.1900496

T1 - Optimal design of a large dual-polarization microstrip reflectarray with China-coverage patterns for satellite communications
A1 - Gang Zhao
A1 - Yong-chang Jiao
A1 - Guan-tao Chen
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 21
IS - 1
SP - 159
EP - 173
%@ 2095-9184
Y1 - 2020
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.1900496

A large dual-polarization microstrip reflectarray with China-coverage patterns in two operating bands is designed. To sufficiently compensate for the spatial phase delay differences in two operating bands separately, a three-layer rectangular patch element is addressed, which is suitable for the large dual-polarization reflectarray. Due to the complexly shaped areas and high gain requirements, there are more than 25 000 elements in the reflectarray, making it difficult to design, due to more than 150 000 optimization variables. First, the discrete fast Fourier transform (DFFT) and the inverse DFFT are used to establish a one-to-one relationship between the aperture distribution and the far field, which lays a foundation for optimizing the shaped-beam reflectarray. The intersection approach, based on the alternating projection, is used to obtain the desired reflection phases of all the elements at some sample frequencies, and a new method for producing a suitable initial solution is proposed to avoid undesired local minima. To validate the design method, a dual-polarization shaped-beam reflectarray with 7569 elements is fabricated and measured. The measurement results are in reasonable agreement with the simulation ones. Then, for the large broadband reflectarray with the minimum differential spatial phase delays in the operating band, an approach for determining the optimal position of the feed is discussed. To simultaneously find optimal dimensions of each element in two orthogonal directions, we establish a new optimization model, which is solved by the regular polyhedron method. Finally, a dual-band dual-polarization microstrip reflectarray with 25 305 elements is designed to cover the continent of China. Simulation results show that patterns of the reflectarray meet the China-coverage requirements in two operating bands, and that the proposed optimization method for designing large reflectarrays with complexly shaped patterns is reliable and efficient.



摘要:设计了一款具有中国版图赋形的大型双频双极化微带反射阵天线。为充分补偿两个频段范围内的空间相位延迟差,采用一种适用于大型双极化反射阵的3层矩形贴片单元。由于赋形区域形状复杂、赋形增益要求很高,该反射阵天线单元数量超过25 000个,优化变量数超过150 000个,导致其设计非常困难。本文首先通过离散快速傅里叶变换及其逆变换建立口径场和远场的一一对应关系,为赋形反射阵天线的优化奠定基础。进而采用基于交替投影的交集方法,优化获得多个典型频率下所有单元的目标反射相位。为避免优化过程陷入局部极值点,采用一种产生合适初始解的新方法。为验证设计方法的有效性,制作了一个7569单元的双极化反射阵天线并进行实验测试。测试与仿真结果吻合良好。为使宽带工作的大型反射阵天线带宽范围的空间相位延迟极小化,提出一种确定馈源最佳位置的方法。为在两个相互正交方向上同时找到单元的最优尺寸,建立一种新的优化模型,通过正多面体优化方法进行优化计算。最后,设计了一款覆盖中国陆地版图的单元数为25 305的双频双极化微带反射阵天线。仿真结果表明,该反射阵天线在两个工作频带范围内均可满足中国版图覆盖要求,证明所提出的复杂赋形波束大型反射阵天线优化设计方法可靠和有效。


Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article


[1]Arrebola M, Encinar JA, Barba M, 2008. Multifed printed reflectarray with three simultaneous shaped beams for LMDS central station antenna. IEEE Trans Antenn Propag, 56(6):1518-1527.

[2]Bucci O, Franceschetti G, 1990. Intersection approach to array pattern synthesis. IEE Proc H Microw Antenn Propag, 137(6):349-357.

[3]Carrasco E, Barba M, Encinar JA, et al., 2013. Design, manufacture and test of a low-cost shaped-beam reflectarray using a single layer of varying-sized printed dipoles. IEEE Trans Antenn Propag, 61(6):3077-3085.

[4]Chaharmir MR, Shaker J, 2008. Broadband reflectarray with combination of cross and rectangle loop elements. Electron Lett, 44(11):658-659.

[5]Chaharmir MR, Shaker J, Legay H, 2009. Broadband design of a single layer large reflectarray using multi cross loop elements. IEEE Trans Antenn Propag, 57(10):3363- 3366.

[6]Clark RH, Brown J, 1980. Diffraction Theory and Antennas. Halsted Press, New York, USA.

[7]Encinar JA, Zornoza JA, 2004. Three-layer printed reflectarrays for contoured beam space applications. IEEE Trans Antenn Propag, 52(5):1138-1148.

[8]Encinar JA, Datashvili LS, Zornoza JA, et al., 2006. Dual- polarization dual-coverage reflectarray for space applications. IEEE Trans Antenn Propag, 54(10):2827- 2837.

[9]Encinar JA, Arrebola M, Fuente LDL, et al., 2011. A transmit- receive reflectarray antenna for direct broadcast satellite applications. IEEE Trans Antenn Propag, 59(9):3255- 3264.

[10]Jiao YC, Wei WY, Huang LW, et al., 1993. A new low-side-lobe pattern synthesis technique for conformal arrays. IEEE Trans Antenn Propag, 41(6):824-831.

[11]Pozar DM, 2007. Wideband reflectarrays using artificial impedance surfaces. Electron Lett, 43(3):148-149.

[12]Pozar DM, Targonski SD, Pokuls R, 1999. A shaped-beam microstrip patch reflectarray. IEEE Trans Antenn Propag, 47(7):1167-1173.

[13]Prado DR, Arrebola M, Pino MR, et al., 2017. Efficient crosspolar optimization of shaped-beam dual-polarized reflectarrays using full-wave analysis for the antenna element characterization. IEEE Trans Antenn Propag, 65(2):623-635.

[14]Rahmat-Samii Y, Michielssen E, 1999. Electromagnetic optimization by genetic algorithms. Microw J, 42(11): 232-232.

[15]Rahmat-Samii Y, Cramer P, Woo K, et al., 1981. Realizable feed-element patterns for multibeam reflector antenna analysis. IEEE Trans Antenn Propag, 29(6):961-963.

[16]Robinson J, Rahmat-Samii Y, 2004. Particle swarm optimization in electromagnetics. IEEE Trans Antenn Propag, 52(2):397-407.

[17]Vacchione JD, 1990. Techniques for Analyzing Planar, Periodic Frequency Selective Surface Systems. PhD Thesis, University of Illinois at Urbana-Champaign, Illinois, USA.

[18]Wu GB, Qu SW, Wang YX, et al., 2018. Nonuniform FSS-backed reflectarray with synthesized phase and amplitude distribution. IEEE Trans Antenn Propag, 66(12): 6883-6892.

[19]Yu A, Yang F, Elsherbeni AZ, et al., 2009. A single layer broadband circularly polarized reflectarray based on the element rotation technique. IEEE Antennas and Propagation Society Int Symp, p.1-4.

[20]Zhang L, Cui Z, Jiao YC, et al., 2009. Broadband patch antenna design using differential evolution algorithm. Microw Opt Technol Lett, 51(7):1692-1695.

[21]Zhou M, Sørensen SB, Kim OS, et al., 2013. Direct optimization of printed reflectarrays for contoured beam satellite antenna applications. IEEE Trans Antenn Propag, 61(4): 1995-2004.

[22]Zhou M, Sørensen SB, Kim OS, et al., 2014. The generalized direct optimization technique for printed reflectarrays. IEEE Trans Antenn Propag, 62(4):1690-1700.

[23]Zhou M, Borries O, Jørgensen E, 2015. Design and optimization of a single-layer planar transmit-receive contoured beam reflectarray with enhanced performance. IEEE Trans Antenn Propag, 63(4):1247-1254.

Open peer comments: Debate/Discuss/Question/Opinion


Please provide your name, email address and a comment

Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE