Full Text:   <583>

Summary:  <70>

CLC number: TN82

On-line Access: 2024-08-30

Received: 2023-03-28

Revision Accepted: 2023-09-18

Crosschecked: 2024-08-30

Cited: 0

Clicked: 736

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Xuanfeng TONG

https://orcid.org/0000-0001-8730-9331

Zhi Hao JIANG

https://orcid.org/0000-0002-4275-1203

-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering  2024 Vol.25 No.8 P.1145-1161

http://doi.org/10.1631/FITEE.2300214


A low-profile dual-broadband dual-circularly-polarized reflectarray for K-/Ka-band space applications


Author(s):  Xuanfeng TONG, Zhi Hao JIANG, Yuan LI, Fan WU, Lin PENG, Taiwei YUE, Wei HONG

Affiliation(s):  State Key Laboratory of Millimeter Waves, School of Information Science and Engineering, Southeast University, Nanjing 210096, China; more

Corresponding email(s):   zhihao.jiang@seu.edu.cn

Key Words:  Broadband, Dual-band, Dual-circularly-polarized, Reflectarray, Shared-aperture


Xuanfeng TONG, Zhi Hao JIANG, Yuan LI, Fan WU, Lin PENG, Taiwei YUE, Wei HONG. A low-profile dual-broadband dual-circularly-polarized reflectarray for K-/Ka-band space applications[J]. Frontiers of Information Technology & Electronic Engineering, 2024, 25(8): 1145-1161.

@article{title="A low-profile dual-broadband dual-circularly-polarized reflectarray for K-/Ka-band space applications",
author="Xuanfeng TONG, Zhi Hao JIANG, Yuan LI, Fan WU, Lin PENG, Taiwei YUE, Wei HONG",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="25",
number="8",
pages="1145-1161",
year="2024",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.2300214"
}

%0 Journal Article
%T A low-profile dual-broadband dual-circularly-polarized reflectarray for K-/Ka-band space applications
%A Xuanfeng TONG
%A Zhi Hao JIANG
%A Yuan LI
%A Fan WU
%A Lin PENG
%A Taiwei YUE
%A Wei HONG
%J Frontiers of Information Technology & Electronic Engineering
%V 25
%N 8
%P 1145-1161
%@ 2095-9184
%D 2024
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.2300214

TY - JOUR
T1 - A low-profile dual-broadband dual-circularly-polarized reflectarray for K-/Ka-band space applications
A1 - Xuanfeng TONG
A1 - Zhi Hao JIANG
A1 - Yuan LI
A1 - Fan WU
A1 - Lin PENG
A1 - Taiwei YUE
A1 - Wei HONG
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 25
IS - 8
SP - 1145
EP - 1161
%@ 2095-9184
Y1 - 2024
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.2300214


Abstract: 
A low-profile dual-broadband dual-circularly-polarized (dual-CP) reflectarray (RA) is proposed and demonstrated, supporting independent beamforming for right-/left-handed CP waves at both K-band and Ka-band. Such functionality is achieved by incorporating multi-layered phase shifting elements individually operating in the K- and Ka-band, which are then interleaved in a shared aperture, resulting in a cell thickness of only about 0.1λL. By rotating the designed K- and Ka-band elements around their own geometrical centers, the dual-CP waves in each band can be modulated separately. To reduce the overall profile, planar K-/Ka-band dual-CP feeds with a broad band are designed based on the magnetoelectric dipoles and multi-branch hybrid couplers. The planar feeds achieve bandwidths of about 32% and 26% at K- and Ka-band respectively with reflection magnitudes below -13 dB, an axial ratio smaller than 2 dB, and a gain variation of less than 1 dB. A proof-of-concept dual-band dual-CP RA integrated with the planar feeds is fabricated and characterized which is capable of generating asymmetrically distributed dual-band dual-CP beams. The measured peak gain values of the beams are around 24.3 and 27.3 dBic, with joint gain variation <1 dB and axial ratio <2 dB bandwidths wider than 20.6% and 14.6% at the lower and higher bands, respectively. The demonstrated dual-broadband dual-CP RA with four degrees of freedom of beamforming could be a promising candidate for space and satellite communications.

面向K/Ka波段空间应用的低剖面双宽频双圆极化反射阵天线

童宣锋1,蒋之浩1,2,李远1,吴凡1,彭琳3,岳泰巍4,洪伟1,2
1东南大学信息科学与工程学院毫米波全国重点实验室,中国南京市,210096
2紫金山实验室,中国南京市,211111
3中兴通讯公司移动网络与移动多媒体技术重点实验室,中国深圳市,518057
4苹果公司,美国加利福尼亚州库比蒂诺,95014
摘要:提出并验证了一款能够独立控制K波段和Ka波段右旋圆极化/左旋圆极化波束指向的低剖面双宽频双圆极化反射阵天线。该反射阵天线通过将工作于K/Ka波段的多层移相单元进行共口径交错排布实现,其厚度仅为0.1λL。将设计的K/Ka波段反射阵单元分别围绕它们各自的几何中心旋转后,实现了对每个频段双圆极化波的独立调制。此外,为降低天线总体剖面高度,基于磁电偶极子和多阶耦合器设计了K/Ka波段双圆极化平面天线作为馈源,其可在32%和26%带宽内具有反射系数幅度小于−13 dB、轴比低于2 dB以及增益变化小于1 dB的特性。最后,将所设计的反射阵和馈源天线集成后实现了双宽频双圆极化反射阵天线,其产生的双频双圆极化波束可非对称地分布在x-z面和y-z面内。对所设计的反射阵天线进行加工和实验验证,其在低频和高频实测的最大增益值分别为24.3 dBic和27.3 dBic、实测的1 dB增益和2 dB轴比带宽分别为20.6%和14.6%。该双宽频双圆极化反射阵天线具备4个波束成形自由度,有望成为空间通信和卫星通信的有力备选器件之一。

关键词:宽带;双频;双圆极化;反射阵;共口径

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Abdelrahman AH, Yang F, Elsherbeni AZ, et al., 2017. Analysis and Design of Transmitarray Antennas. Springer, Cham, Germany.

[2]Amendola G, Cavallo D, Chaloun T, et al., 2023. Low-Earth orbit user segment in the Ku and Ka-band: an overview of antennas and RF front-end technologies. IEEE Microw Mag, 24(2):32-48.

[3]Chaharmir MR, Shaker J, 2015. Design of a multilayer X-/Ka-band frequency-selective surface-backed reflectarray for satellite applications. IEEE Trans Antenn Propag, 63(4):1255-1262.

[4]Cheng CC, Abbaspour-Tamijani A, 2009. Evaluation of a novel topology for MEMS programmable reflectarray antennas. IEEE Trans Microw Theory Tech, 57(12):3333-3344.

[5]Deng RY, Xu SH, Yang F, et al., 2017a. Design of a low-cost single-layer X/Ku dual-band metal-only reflectarray antenna. IEEE Antenn Wirel Propag Lett, 16:2106-2109.

[6]Deng RY, Xu SS, Yang F, et al., 2017b. Single-layer dual-band reflectarray antennas with wide frequency ratios and high aperture efficiencies using phoenix elements. IEEE Trans Antenn Propag, 65(2):612-622.

[7]Deng RY, Yang F, Xu SH, et al., 2017c. An FSS-backed 20/30-GHz dual-band circularly polarized reflectarray with suppressed mutual coupling and enhanced performance. IEEE Trans Antenn Propag, 65(2):926-931.

[8]Deng RY, Xu SH, Yang F, et al., 2018. An FSS-backed Ku/Ka quad-band reflectarray antenna for satellite communications. IEEE Trans Antenn Propag, 66(8):4353-4358.

[9]Encinar JA, Zornoza JA, 2003. Broadband design of three-layer printed reflectarrays. IEEE Trans Antenn Propag, 51(7):1662-1664.

[10]Fenech H, 2021. High-Throughput Satellites. Artech, Norwood, USA.

[11]Fenech H, Amos S, Tomatis A, et al., 2015. High throughput satellite systems: an analytical approach. IEEE Trans Aerosp Electron Syst, 51(1):192-202.

[12]Florencio R, Encinar JA, Boix RR, et al., 2019. Flat reflectarray that generates adjacent beams by discriminating in dual circular polarization. IEEE Trans Antenn Propag, 67(6):3733-3742.

[13]Gagnon N, Petosa A, McNamara DA, 2013. Research and development on phase-shifting surfaces (PSSs). IEEE Antenn Propag Mag, 55(2):29-48.

[14]Garcia-Aguilar A, Inclan-Alonso JM, Vigil-Herrero L, et al., 2012. Low-profile dual circularly polarized antenna array for satellite communications in the X band. IEEE Trans Antenn Propag, 60(5):2276-2284.

[15]Geaney CS, Hosseini M, Hum SV, 2019. Reflectarray antennas for independent dual linear and circular polarization control. IEEE Trans Antenn Propag, 67(9):5908-5918.

[16]Guo WL, Wang GM, Ji WY, et al., 2020. Broadband spin-decoupled metasurface for dual-circularly polarized reflector antenna design. IEEE Trans Antenn Propag, 68(5):3534-3543.

[17]Hong W, Jiang ZH, Yu C, et al., 2021. The role of millimeter-wave technologies in 5G/6G wireless communications. IEEE J Microw, 1(1):101-122.

[18]Huang J, Encinar JA, 2008. Reflectarray Antennas. Wiley, Hoboken, USA.

[19]Jiang ZH, Yue TW, Hong W, 2020a. Low-profile and wideband dual-circularly polarized reflect-arrays based on rotated metal-backed dual-polarized aperture-coupled patch elements. IEEE Trans Antenn Propag, 68(3):2108-2117.

[20]Jiang ZH, Zhang Y, Hong W, 2020b. Anisotropic impedance surface-enabled low-profile broadband dual-circularly polarized multibeam reflectarrays for Ka-band applications. IEEE Trans Antenn Propag, 68(8):6441-6446.

[21]Jiang ZH, Wu F, Yue TW, et al., 2021. Wideband and low-profile integrated dual-circularly-polarized transmit-arrays enabled by antenna-filter-antenna phase shifting cells. IEEE Trans Antenn Propag, 69(11):7462-7475.

[22]Jin JM, Volakis JL, 1991. A finite-element-boundary integral formulation for scattering by three-dimensional cavity-backed apertures. IEEE Trans Antenn Propag, 39(1):97-104.

[23]Joyal MA, El Hani R, Riel M, et al., 2015. A reflectarray-based dual-surface reflector working in circular polarization. IEEE Trans Antenn Propag, 63(4):1306-1313.

[24]Li Y, Jiang ZH, Tong XF, et al., 2022. Wideband dual-circularly-polarized reflect-arrays based on dual-functional-layer cells with Berry-phase compensation at X-band. IEEE Trans Antenn Propag, 70(10):9924-9929.

[25]Li YJ, Wang JH, Luk KM, 2017. Millimeter-wave multibeam aperture-coupled magnetoelectric dipole array with planar substrate integrated beamforming network for 5G applications. IEEE Trans Antenn Propag, 65(12):6422-6431.

[26]Liu N, Sheng XJ, Zhang CB, et al., 2017. A miniaturized tri-band frequency selective surface based on convoluted design. IEEE Antenn Propag Lett, 16:2384-2387.

[27]Luo Q, Gao S, Sobhy M, et al., 2016. Dual circularly polarized equilateral triangular patch array. IEEE Trans Antenn Propag, 64(6):2255-2262.

[28]Luo Q, Gao S, Li WT, et al., 2019. Multibeam dual-circularly polarized reflectarray for connected and autonomous vehicles. IEEE Trans Veh Technol, 68(4):3574-3585.

[29]Malfajani RS, Atlasbaf Z, 2014. Design and implementation of a dual-band single layer reflectarray in X and K bands. IEEE Trans Antenn Propag, 62(8):4425-4431.

[30]Mao CX, Jiang ZH, Werner DH, et al., 2019. Compact self-diplexing dual-band dual-sense circularly polarized array antenna with closely spaced operating frequencies. IEEE Trans Antenn Propag, 67(7):4617-4625.

[31]Martinez-de-Rioja D, Martinez-de-Rioja E, Rodriguez-Vaqueiro Y, et al., 2021. Transmit-receive parabolic reflectarray to generate two beams per feed for multispot satellite antennas in Ka-band. IEEE Trans Antenn Propag, 69(5):2673-2685.

[32]Martinez-de-Rioja E, Martinez-de-Rioja D, Encinar JA, et al., 2019. Advanced multibeam antenna configurations based on reflectarrays: providing multispot coverage with a smaller number of apertures for satellite communications in the K and Ka bands. IEEE Antenn Propag Mag, 61(5):77-86.

[33]Mener S, Gillard R, Sauleau R, et al., 2014. Unit cell for reflectarrays operating with independent dual circular polarizations. IEEE Antenn Wirel Propag Lett, 13:1176-1179.

[34]Mener S, Gillard R, Sauleau R, et al., 2015. Dual circularly polarized reflectarray with independent control of polarizations. IEEE Trans Antenn Propag, 63(4):1877-1881.

[35]Muraguchi M, Yukitake T, Naito Y, 1983. Optimum design of 3-dB branch-line couplers using microstrip lines. IEEE Trans Microw Theory Tech, 31(8):674-678.

[36]Naseri P, Riel M, Demers Y, et al., 2020. A dual-band dual-circularly polarized reflectarray for K/Ka-band space applications. IEEE Trans Antenn Propag, 68(6):4627-4637.

[37]Nayeri P, Yang F, Elsherbeni AZ, 2015. Beam-scanning reflect- array antennas: a technical overview and state of the art. IEEE Antenn Propag Mag, 57(4):32-47.

[38]Sanz-Fernández J, Saenz E, de Maagt P, 2015. A circular polarization selective surface for space applications. IEEE Trans Antenn Propag, 63(6):2460-2470.

[39]Selvanayagam M, Eleftheriades GV, 2016. Design and measurement of tensor impedance transmitarrays for chiral polarization control. IEEE Trans Microw Theory Tech, 64(2):414-428.

[40]Shamsaee Malfajani R, Abbasi Arand B, 2017. Dual-band orthogonally polarized single-layer reflectarray antenna. IEEE Trans Antenn Propag, 65(11):6145-6150.

[41]Sheng M, Zhou D, Bai WG, et al., 2023. Coverage enhancement for 6G satellite-terrestrial integrated networks: performance metrics, constellation configuration and resource allocation. Sci China Inform Sci, 66(3):130303.

[42]Smith T, Gothelf U, Kim OS, et al., 2013. Design, manufacturing, and testing of a 20/30-GHz dual-band circularly polarized reflectarray antenna. IEEE Antenn Wirel Propag Lett, 12:1480-1483.

[43]Sofi MA, Saurav K, Koul SK, 2020. Frequency-selective surface-based compact single substrate layer dual-band transmission-type linear-to-circular polarization converter. IEEE Trans Microw Theory Tech, 68(10):4138-4149.

[44]Su T, Yi XJ, Wu B, 2019. X/Ku dual-band single-layer reflectarray antenna. IEEE Antenn Wirel Propag Lett, 18(2):338-342.

[45]Tong XF, Jiang ZH, Li Y, et al., 2022. Dual-wideband dual-circularly-polarized shared-aperture reflectarrays with a single functional substrate for K-/Ka-band applications. IEEE Trans Antenn Propag, 70(7):5404-5417.

[46]Wang DY, Liu FF, Liu T, et al., 2021. Efficient generation of complex vectorial optical fields with metasurfaces. Light Sci Appl, 10(1):67.

[47]Wang YF, Ge YH, Chen ZH, et al., 2022. Broadband high-efficiency ultrathin metasurfaces with simultaneous independent control of transmission and reflection amplitudes and phases. IEEE Trans Microw Theory Tech, 70(1):254-263.

[48]Wu Q, Hirokawa J, Yin JX, et al., 2018. Millimeter-wave multibeam endfire dual-circularly polarized antenna array for 5G wireless applications. IEEE Trans Antenn Propag, 66(9):4930-4935.

[49]Xu P, Li L, Li RJ, et al., 2021. Dual-circularly polarized spin-decoupled reflectarray with FSS-back for independent operating at Ku-/Ka-bands. IEEE Trans Antenn Propag, 69(10):7041-7046.

[50]Zhang XL, Yang F, Xu SS, et al., 2021. Hybrid polarization-phase tuning methodology for reflectarray antennas. IEEE Trans Antenn Propag, 69(9):5534-5545.

[51]Zhao Y, Luk KM, 2018. Dual circular-polarized SIW-fed high-gain scalable antenna array for 60 GHz applications. IEEE Trans Antenn Propag, 66(3):1288-1298.

[52]Zhou M, Sørensen SB, Brand Y, et al., 2020. Doubly curved reflectarray for dual-band multiple spot beam communication satellites. IEEE Trans Antenn Propag, 68(3):2087-2096.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE