CLC number: TN82
On-line Access: 2024-08-30
Received: 2023-03-28
Revision Accepted: 2023-09-18
Crosschecked: 2024-08-30
Cited: 0
Clicked: 736
Citations: Bibtex RefMan EndNote GB/T7714
Xuanfeng TONG, Zhi Hao JIANG, Yuan LI, Fan WU, Lin PENG, Taiwei YUE, Wei HONG. A low-profile dual-broadband dual-circularly-polarized reflectarray for K-/Ka-band space applications[J]. Frontiers of Information Technology & Electronic Engineering, 2024, 25(8): 1145-1161.
@article{title="A low-profile dual-broadband dual-circularly-polarized reflectarray for K-/Ka-band space applications",
author="Xuanfeng TONG, Zhi Hao JIANG, Yuan LI, Fan WU, Lin PENG, Taiwei YUE, Wei HONG",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="25",
number="8",
pages="1145-1161",
year="2024",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.2300214"
}
%0 Journal Article
%T A low-profile dual-broadband dual-circularly-polarized reflectarray for K-/Ka-band space applications
%A Xuanfeng TONG
%A Zhi Hao JIANG
%A Yuan LI
%A Fan WU
%A Lin PENG
%A Taiwei YUE
%A Wei HONG
%J Frontiers of Information Technology & Electronic Engineering
%V 25
%N 8
%P 1145-1161
%@ 2095-9184
%D 2024
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.2300214
TY - JOUR
T1 - A low-profile dual-broadband dual-circularly-polarized reflectarray for K-/Ka-band space applications
A1 - Xuanfeng TONG
A1 - Zhi Hao JIANG
A1 - Yuan LI
A1 - Fan WU
A1 - Lin PENG
A1 - Taiwei YUE
A1 - Wei HONG
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 25
IS - 8
SP - 1145
EP - 1161
%@ 2095-9184
Y1 - 2024
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.2300214
Abstract: A low-profile dual-broadband dual-circularly-polarized (dual-CP) reflectarray (RA) is proposed and demonstrated, supporting independent beamforming for right-/left-handed CP waves at both K-band and Ka-band. Such functionality is achieved by incorporating multi-layered phase shifting elements individually operating in the K- and Ka-band, which are then interleaved in a shared aperture, resulting in a cell thickness of only about 0.1λL. By rotating the designed K- and Ka-band elements around their own geometrical centers, the dual-CP waves in each band can be modulated separately. To reduce the overall profile, planar K-/Ka-band dual-CP feeds with a broad band are designed based on the magnetoelectric dipoles and multi-branch hybrid couplers. The planar feeds achieve bandwidths of about 32% and 26% at K- and Ka-band respectively with reflection magnitudes below -13 dB, an axial ratio smaller than 2 dB, and a gain variation of less than 1 dB. A proof-of-concept dual-band dual-CP RA integrated with the planar feeds is fabricated and characterized which is capable of generating asymmetrically distributed dual-band dual-CP beams. The measured peak gain values of the beams are around 24.3 and 27.3 dBic, with joint gain variation <1 dB and axial ratio <2 dB bandwidths wider than 20.6% and 14.6% at the lower and higher bands, respectively. The demonstrated dual-broadband dual-CP RA with four degrees of freedom of beamforming could be a promising candidate for space and satellite communications.
[1]Abdelrahman AH, Yang F, Elsherbeni AZ, et al., 2017. Analysis and Design of Transmitarray Antennas. Springer, Cham, Germany.
[2]Amendola G, Cavallo D, Chaloun T, et al., 2023. Low-Earth orbit user segment in the Ku and Ka-band: an overview of antennas and RF front-end technologies. IEEE Microw Mag, 24(2):32-48.
[3]Chaharmir MR, Shaker J, 2015. Design of a multilayer X-/Ka-band frequency-selective surface-backed reflectarray for satellite applications. IEEE Trans Antenn Propag, 63(4):1255-1262.
[4]Cheng CC, Abbaspour-Tamijani A, 2009. Evaluation of a novel topology for MEMS programmable reflectarray antennas. IEEE Trans Microw Theory Tech, 57(12):3333-3344.
[5]Deng RY, Xu SH, Yang F, et al., 2017a. Design of a low-cost single-layer X/Ku dual-band metal-only reflectarray antenna. IEEE Antenn Wirel Propag Lett, 16:2106-2109.
[6]Deng RY, Xu SS, Yang F, et al., 2017b. Single-layer dual-band reflectarray antennas with wide frequency ratios and high aperture efficiencies using phoenix elements. IEEE Trans Antenn Propag, 65(2):612-622.
[7]Deng RY, Yang F, Xu SH, et al., 2017c. An FSS-backed 20/30-GHz dual-band circularly polarized reflectarray with suppressed mutual coupling and enhanced performance. IEEE Trans Antenn Propag, 65(2):926-931.
[8]Deng RY, Xu SH, Yang F, et al., 2018. An FSS-backed Ku/Ka quad-band reflectarray antenna for satellite communications. IEEE Trans Antenn Propag, 66(8):4353-4358.
[9]Encinar JA, Zornoza JA, 2003. Broadband design of three-layer printed reflectarrays. IEEE Trans Antenn Propag, 51(7):1662-1664.
[10]Fenech H, 2021. High-Throughput Satellites. Artech, Norwood, USA.
[11]Fenech H, Amos S, Tomatis A, et al., 2015. High throughput satellite systems: an analytical approach. IEEE Trans Aerosp Electron Syst, 51(1):192-202.
[12]Florencio R, Encinar JA, Boix RR, et al., 2019. Flat reflectarray that generates adjacent beams by discriminating in dual circular polarization. IEEE Trans Antenn Propag, 67(6):3733-3742.
[13]Gagnon N, Petosa A, McNamara DA, 2013. Research and development on phase-shifting surfaces (PSSs). IEEE Antenn Propag Mag, 55(2):29-48.
[14]Garcia-Aguilar A, Inclan-Alonso JM, Vigil-Herrero L, et al., 2012. Low-profile dual circularly polarized antenna array for satellite communications in the X band. IEEE Trans Antenn Propag, 60(5):2276-2284.
[15]Geaney CS, Hosseini M, Hum SV, 2019. Reflectarray antennas for independent dual linear and circular polarization control. IEEE Trans Antenn Propag, 67(9):5908-5918.
[16]Guo WL, Wang GM, Ji WY, et al., 2020. Broadband spin-decoupled metasurface for dual-circularly polarized reflector antenna design. IEEE Trans Antenn Propag, 68(5):3534-3543.
[17]Hong W, Jiang ZH, Yu C, et al., 2021. The role of millimeter-wave technologies in 5G/6G wireless communications. IEEE J Microw, 1(1):101-122.
[18]Huang J, Encinar JA, 2008. Reflectarray Antennas. Wiley, Hoboken, USA.
[19]Jiang ZH, Yue TW, Hong W, 2020a. Low-profile and wideband dual-circularly polarized reflect-arrays based on rotated metal-backed dual-polarized aperture-coupled patch elements. IEEE Trans Antenn Propag, 68(3):2108-2117.
[20]Jiang ZH, Zhang Y, Hong W, 2020b. Anisotropic impedance surface-enabled low-profile broadband dual-circularly polarized multibeam reflectarrays for Ka-band applications. IEEE Trans Antenn Propag, 68(8):6441-6446.
[21]Jiang ZH, Wu F, Yue TW, et al., 2021. Wideband and low-profile integrated dual-circularly-polarized transmit-arrays enabled by antenna-filter-antenna phase shifting cells. IEEE Trans Antenn Propag, 69(11):7462-7475.
[22]Jin JM, Volakis JL, 1991. A finite-element-boundary integral formulation for scattering by three-dimensional cavity-backed apertures. IEEE Trans Antenn Propag, 39(1):97-104.
[23]Joyal MA, El Hani R, Riel M, et al., 2015. A reflectarray-based dual-surface reflector working in circular polarization. IEEE Trans Antenn Propag, 63(4):1306-1313.
[24]Li Y, Jiang ZH, Tong XF, et al., 2022. Wideband dual-circularly-polarized reflect-arrays based on dual-functional-layer cells with Berry-phase compensation at X-band. IEEE Trans Antenn Propag, 70(10):9924-9929.
[25]Li YJ, Wang JH, Luk KM, 2017. Millimeter-wave multibeam aperture-coupled magnetoelectric dipole array with planar substrate integrated beamforming network for 5G applications. IEEE Trans Antenn Propag, 65(12):6422-6431.
[26]Liu N, Sheng XJ, Zhang CB, et al., 2017. A miniaturized tri-band frequency selective surface based on convoluted design. IEEE Antenn Propag Lett, 16:2384-2387.
[27]Luo Q, Gao S, Sobhy M, et al., 2016. Dual circularly polarized equilateral triangular patch array. IEEE Trans Antenn Propag, 64(6):2255-2262.
[28]Luo Q, Gao S, Li WT, et al., 2019. Multibeam dual-circularly polarized reflectarray for connected and autonomous vehicles. IEEE Trans Veh Technol, 68(4):3574-3585.
[29]Malfajani RS, Atlasbaf Z, 2014. Design and implementation of a dual-band single layer reflectarray in X and K bands. IEEE Trans Antenn Propag, 62(8):4425-4431.
[30]Mao CX, Jiang ZH, Werner DH, et al., 2019. Compact self-diplexing dual-band dual-sense circularly polarized array antenna with closely spaced operating frequencies. IEEE Trans Antenn Propag, 67(7):4617-4625.
[31]Martinez-de-Rioja D, Martinez-de-Rioja E, Rodriguez-Vaqueiro Y, et al., 2021. Transmit-receive parabolic reflectarray to generate two beams per feed for multispot satellite antennas in Ka-band. IEEE Trans Antenn Propag, 69(5):2673-2685.
[32]Martinez-de-Rioja E, Martinez-de-Rioja D, Encinar JA, et al., 2019. Advanced multibeam antenna configurations based on reflectarrays: providing multispot coverage with a smaller number of apertures for satellite communications in the K and Ka bands. IEEE Antenn Propag Mag, 61(5):77-86.
[33]Mener S, Gillard R, Sauleau R, et al., 2014. Unit cell for reflectarrays operating with independent dual circular polarizations. IEEE Antenn Wirel Propag Lett, 13:1176-1179.
[34]Mener S, Gillard R, Sauleau R, et al., 2015. Dual circularly polarized reflectarray with independent control of polarizations. IEEE Trans Antenn Propag, 63(4):1877-1881.
[35]Muraguchi M, Yukitake T, Naito Y, 1983. Optimum design of 3-dB branch-line couplers using microstrip lines. IEEE Trans Microw Theory Tech, 31(8):674-678.
[36]Naseri P, Riel M, Demers Y, et al., 2020. A dual-band dual-circularly polarized reflectarray for K/Ka-band space applications. IEEE Trans Antenn Propag, 68(6):4627-4637.
[37]Nayeri P, Yang F, Elsherbeni AZ, 2015. Beam-scanning reflect- array antennas: a technical overview and state of the art. IEEE Antenn Propag Mag, 57(4):32-47.
[38]Sanz-Fernández J, Saenz E, de Maagt P, 2015. A circular polarization selective surface for space applications. IEEE Trans Antenn Propag, 63(6):2460-2470.
[39]Selvanayagam M, Eleftheriades GV, 2016. Design and measurement of tensor impedance transmitarrays for chiral polarization control. IEEE Trans Microw Theory Tech, 64(2):414-428.
[40]Shamsaee Malfajani R, Abbasi Arand B, 2017. Dual-band orthogonally polarized single-layer reflectarray antenna. IEEE Trans Antenn Propag, 65(11):6145-6150.
[41]Sheng M, Zhou D, Bai WG, et al., 2023. Coverage enhancement for 6G satellite-terrestrial integrated networks: performance metrics, constellation configuration and resource allocation. Sci China Inform Sci, 66(3):130303.
[42]Smith T, Gothelf U, Kim OS, et al., 2013. Design, manufacturing, and testing of a 20/30-GHz dual-band circularly polarized reflectarray antenna. IEEE Antenn Wirel Propag Lett, 12:1480-1483.
[43]Sofi MA, Saurav K, Koul SK, 2020. Frequency-selective surface-based compact single substrate layer dual-band transmission-type linear-to-circular polarization converter. IEEE Trans Microw Theory Tech, 68(10):4138-4149.
[44]Su T, Yi XJ, Wu B, 2019. X/Ku dual-band single-layer reflectarray antenna. IEEE Antenn Wirel Propag Lett, 18(2):338-342.
[45]Tong XF, Jiang ZH, Li Y, et al., 2022. Dual-wideband dual-circularly-polarized shared-aperture reflectarrays with a single functional substrate for K-/Ka-band applications. IEEE Trans Antenn Propag, 70(7):5404-5417.
[46]Wang DY, Liu FF, Liu T, et al., 2021. Efficient generation of complex vectorial optical fields with metasurfaces. Light Sci Appl, 10(1):67.
[47]Wang YF, Ge YH, Chen ZH, et al., 2022. Broadband high-efficiency ultrathin metasurfaces with simultaneous independent control of transmission and reflection amplitudes and phases. IEEE Trans Microw Theory Tech, 70(1):254-263.
[48]Wu Q, Hirokawa J, Yin JX, et al., 2018. Millimeter-wave multibeam endfire dual-circularly polarized antenna array for 5G wireless applications. IEEE Trans Antenn Propag, 66(9):4930-4935.
[49]Xu P, Li L, Li RJ, et al., 2021. Dual-circularly polarized spin-decoupled reflectarray with FSS-back for independent operating at Ku-/Ka-bands. IEEE Trans Antenn Propag, 69(10):7041-7046.
[50]Zhang XL, Yang F, Xu SS, et al., 2021. Hybrid polarization-phase tuning methodology for reflectarray antennas. IEEE Trans Antenn Propag, 69(9):5534-5545.
[51]Zhao Y, Luk KM, 2018. Dual circular-polarized SIW-fed high-gain scalable antenna array for 60 GHz applications. IEEE Trans Antenn Propag, 66(3):1288-1298.
[52]Zhou M, Sørensen SB, Brand Y, et al., 2020. Doubly curved reflectarray for dual-band multiple spot beam communication satellites. IEEE Trans Antenn Propag, 68(3):2087-2096.
Open peer comments: Debate/Discuss/Question/Opinion
<1>