CLC number: TN928
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2021-03-03
Cited: 0
Clicked: 6356
Citations: Bibtex RefMan EndNote GB/T7714
Zhiqiang Wang, Jiawei Liu, Jun Wang, Guangrong Yue. Beam squint effect on high-throughput millimeter-wave communication with an ultra-massive phased array[J]. Frontiers of Information Technology & Electronic Engineering, 2021, 22(4): 560-570.
@article{title="Beam squint effect on high-throughput millimeter-wave communication with an ultra-massive phased array",
author="Zhiqiang Wang, Jiawei Liu, Jun Wang, Guangrong Yue",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="22",
number="4",
pages="560-570",
year="2021",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.2000451"
}
%0 Journal Article
%T Beam squint effect on high-throughput millimeter-wave communication with an ultra-massive phased array
%A Zhiqiang Wang
%A Jiawei Liu
%A Jun Wang
%A Guangrong Yue
%J Frontiers of Information Technology & Electronic Engineering
%V 22
%N 4
%P 560-570
%@ 2095-9184
%D 2021
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.2000451
TY - JOUR
T1 - Beam squint effect on high-throughput millimeter-wave communication with an ultra-massive phased array
A1 - Zhiqiang Wang
A1 - Jiawei Liu
A1 - Jun Wang
A1 - Guangrong Yue
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 22
IS - 4
SP - 560
EP - 570
%@ 2095-9184
Y1 - 2021
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.2000451
Abstract: An ultra-massive phased array can be deployed in high-throughput millimeter-wave (mmWave) communication systems to increase the transmission distance. However, when the signal bandwidth is large, the antenna array response changes with the frequency, causing beam squint. In this paper, we investigate the beam squint effect on a high-throughput mmWave communication system with the single-carrier frequency-domain equalization transmission scheme. Specifically, we first view analog beamforming and the physical channel as a spatial equivalent channel. The characteristics of the spatial equivalent channel are analyzed which behaves like frequency-selective fading. To eliminate the deep fading points in the spatial equivalent channel, an advanced analog beamforming method is proposed based on the zadoff-Chu (ZC) sequence. Then, the low-complexity linear zero-forcing and minimum mean squared error equalizers are considered at the receiver. Simulation results indicate that the proposed ZC-based analog beamforming method can effectively mitigate the performance loss by the beam squint.
[1]Brady JH, Sayeed AM, 2015. Wideband communication with high-dimensional arrays: new results and transceiver architectures. Proc IEEE Int Conf on Communication Workshop, p.1042-1047.
[2]Busari SA, Huq KMS, Mumtaz S, et al., 2018. Millimeter-wave massive MIMO communication for future wireless systems: a survey. IEEE Commun Surv Tutor, 20(2):836-869.
[3]Buzzi S, D’Andrea C, Foggi T, et al., 2018. Single-carrier modulation versus OFDM for millimeter-wave wireless MIMO. IEEE Trans Commun, 66(3):1335-1348.
[4]Cai MM, Gao K, Nie D, et al., 2016. Effect of wideband beam squint on codebook design in phased-array wireless systems. Proc IEEE Global Communications Conf, p.1-6.
[5]Chu D, 1972. Polyphase codes with good periodic correlation properties (Corresp.). IEEE Trans Inform Theory, 18(4):531-532.
[6]Falconer D, Ariyavisitakul SL, Benyamin-Seeyar A, et al., 2002. Frequency domain equalization for single-carrier broadband wireless systems. IEEE Commun Mag, 40(4):58-66.
[7]Gonzáez-Coma JP, Utschick W, Castedo L, 2019. Hybrid LISA for wideband multiuser millimeter-wave communication systems under beam squint. IEEE Trans Wirel Commun, 18(2):1277-1288.
[8]Heath RW, González-Prelcic N, Rangan S, et al., 2016. An overview of signal processing techniques for millimeter wave MIMO systems. IEEE J Sel Top Signal Process, 10(3):436-453.
[9]Hemadeh IA, Satyanarayana K, El-Hajjar M, et al., 2018. Millimeter-wave communications: physical channel models, design considerations, antenna constructions, and link-budget. IEEE Commun Surv Tutor, 20(2):870-913.
[10]Kutty S, Sen D, 2016. Beamforming for millimeter wave communications: an inclusive survey. IEEE Commun Surv Tutor, 18(2):949-973.
[11]Liu B, Tan WQ, Hu H, et al., 2018. Hybrid beamforming for mmWave MIMO-OFDM system with beam squint. Proc IEEE 29th Annual Int Symp on Personal, Indoor and Mobile Radio Communications, p.1422-1426.
[12]Liu W, Weiss S, 2010. Wideband Beamforming: Concepts and Techniques. Wiley, Chichester, UK.
[13]Liu XM, Qiao DL, 2019. Space-time block coding-based beamforming for beam squint compensation. IEEE Wirel Commun Lett, 8(1):241-244.
[14]Mailloux RJ, 2005. Phased Array Antenna Handbook (2nd Ed.). Artech House, Boston, USA.
[15]Meng X, Xia XG, Gao XQ, 2014. Constant-envelope omni-directional transmission with diversity in massive MIMO systems. Proc IEEE Global Communications Conf, p.3784-3789.
[16]Meng X, Gao XQ, Xia XG, 2016. Omnidirectional precoding based transmission in massive MIMO systems. IEEE Trans Commun, 64(1):174-186.
[17]Rodriguez-Fernandez J, Gonzalez-Prelcic N, 2018. Channel estimation for frequency-selective mmWave MIMO systems with beam-squint. Proc IEEE Global Communications Conf, p.1-6.
[18]Roh W, Seol JY, Park J, et al., 2014. Millimeter-wave beamforming as an enabling technology for 5G cellular communications: theoretical feasibility and prototype results. IEEE Commun Mag, 52(2):106-113.
[19]Rotman R, Tur M, Yaron L, 2016. True time delay in phased arrays. Proc IEEE, 104(3):504-518.
[20]Sun S, Rappaport TS, Heath RW, et al., 2014. MIMO for millimeter-wave wireless communications: beamforming, spatial multiplexing, or both? IEEE Commun Mag, 52(12):110-121.
[21]Swindlehurst AL, Ayanoglu E, Heydari P, et al., 2014. Millimeter-wave massive MIMO: the next wireless revolution? IEEE Commun Mag, 52(9):56-62.
[22]Tse D, Viswanath P, 2005. Fundamentals of Wireless Communication. Cambridge University Press, Cambridge, UK.
[23]Wang ZD, Ma XL, Giannakis GB, 2004. OFDM or single-carrier block transmissions? IEEE Trans Commun, 52(3):380-394.
[24]Wang ZQ, Cheng L, Wang J, et al., 2018. Digital compensation wideband analog beamforming for millimeter-wave communication. Proc IEEE 87th Vehicular Technology Conf, p.1-5.
[25]Wu M, Wübben D, Dekorsy A, et al., 2016. Hardware impairments in millimeter wave communications using OFDM and SC-FDE. Proc 20th Int ITG Workshop on Smart Antennas, p.1-8.
[26]Yue GR, Dong AX, Hong H, et al., 2014. Fractionally spaced equalization algorithms in 60GHz communication system. China Commun, 11(6):23-31.
Open peer comments: Debate/Discuss/Question/Opinion
<1>