Full Text:   <2555>

Summary:  <1840>

CLC number: TN92; TN43

On-line Access: 2020-02-27

Received: 2019-09-12

Revision Accepted: 2019-12-31

Crosschecked: 2020-01-27

Cited: 0

Clicked: 5593

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Yi-Ming Yu

https://orcid.org/0000-0003-0616-2994

Kai Kang

https://orcid.org/0000-0002-8878-2080

-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering  2020 Vol.21 No.1 P.97-115

http://doi.org/10.1631/FITEE.1900491


Analysis and design of transformer-based CMOS ultra-wideband millimeter-wave circuits for wireless applications


Author(s):  Yi-Ming Yu, Kai Kang

Affiliation(s):  School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China

Corresponding email(s):   kangkai@uestc.edu.cn

Key Words:  CMOS, Millimeter-wave (mm-Wave), Ultra-wideband, Transformer, Low-noise amplifier, Injection-locked frequency tripler, Injection-locked frequency divider, Mixer


Yi-Ming Yu , Kai Kang . Analysis and design of transformer-based CMOS ultra-wideband millimeter-wave circuits for wireless applications[J]. Frontiers of Information Technology & Electronic Engineering, 2020, 21(1): 97-115.

@article{title="Analysis and design of transformer-based CMOS ultra-wideband millimeter-wave circuits for wireless applications",
author="Yi-Ming Yu , Kai Kang ",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="21",
number="1",
pages="97-115",
year="2020",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.1900491"
}

%0 Journal Article
%T Analysis and design of transformer-based CMOS ultra-wideband millimeter-wave circuits for wireless applications
%A Yi-Ming Yu
%A Kai Kang
%J Frontiers of Information Technology & Electronic Engineering
%V 21
%N 1
%P 97-115
%@ 2095-9184
%D 2020
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.1900491

TY - JOUR
T1 - Analysis and design of transformer-based CMOS ultra-wideband millimeter-wave circuits for wireless applications
A1 - Yi-Ming Yu
A1 - Kai Kang
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 21
IS - 1
SP - 97
EP - 115
%@ 2095-9184
Y1 - 2020
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.1900491


Abstract: 
With a lot of millimeter-wave (mm-Wave) applications being issued, wideband circuits and systems have attracted much attention because of their strong applicability and versatility. In this paper, four transformer-based ultra-wideband mm-Wave circuits demonstrated in CMOS technologies are reviewed from theoretical analysis, implementation, to performance. First, we introduce a mm-Wave low-noise amplifier with transformer-based Gm-boosting and pole-tuning techniques. It achieves wide operating bandwidth, low noise figure, and good gain performance. Second, we review an injection-current-boosting technique which can significantly increase the locking range of mm-Wave injection-locked frequency triplers. Based on the injection locked principle, we also discuss an ultra-wideband mm-Wave divider with the transformer-based high-order resonator. Finally, an E-band up-conversion mixer is presented; using the two-path transconductance stage and transformer-based load, it obtains good linearity and a large operating band.

基于变压器CMOS超宽带毫米波电路分析与设计综述

余益明,康凯
电子科技大学电子科学与工程学院,中国成都市,611731

摘要:近年来,由于大量毫米波无线应用的产生,具有更强通用性的宽带毫米波电路和系统引起广泛关注。总结了4种基于片上变压器结构超宽带毫米波电路的理论分析、设计方法和综合性能。其一为毫米波低噪声放大器,采用基于变压器的跨导增强和极点调谐技术;通过采用这两种技术,该电路同时实现了较大工作带宽、低噪声系数和良好功率增益。其二为毫米波注入锁定三倍频器,采用注入电流增强技术,有效拓展了倍频器的锁定带宽。进一步,采用类似注入锁定技术结合变压器高阶谐振腔方案,实现了一款超宽带毫米波注入锁定分频器。最后,介绍了一款E波段上混频器,其采用两路跨导并联结构和基于变压器的多极点负载,实现了优异线性度和较大工作带宽。

关键词:硅基集成电路;毫米波;超宽带;变压器;低噪声放大器;倍频器;分频器;混频器

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Byeon CW, Lee JH, Lee DY, et al., 2015. A high linearity, image/LO-rejection I/Q up-conversion mixer for 5G cellular communications. European Microwave Conf, p.345-348.

[2]Chan WL, Long JR, 2008. A 56-65 GHz injection-locked frequency tripler with quadrature outputs in 90-nm CMOS. IEEE J Sol-State Circ, 43(12):2739-2746.

[3]Chao Y, Luong HC, 2013. Analysis and design of a 2.9-mW 53.4-79.4-GHz frequency-tracking injection-locked frequency divider in 65-nm CMOS. IEEE J Sol-State Circ, 48(10):2403-2418.

[4]Chen WL, Shiao YSJ, Yen HD, et al., 2013. A 53.6 GHz direct injection-locked frequency divider with a 72% locking range in 65 nm CMOS technology. IEEE MTT-S Int Microwave Symp Digest, p.1-3.

[5]Chen ZL, Liu HH, Liu ZQ, et al., 2019. A 62-85-GHz high linearity upconversion mixer with 18-GHz IF bandwidth. IEEE Microw Wirel Compon Lett, 29(3):219-221.

[6]Chen ZM, Wang CC, Yao HC, et al., 2012. A BiCMOS W-band 2×2 focal-plane array with on-chip antenna. IEEE J Sol-State Circ, 47(10):2355-2371.

[7]Deng W, Siriburanon T, Musa A, et al., 2013. A sub-harmonic injection-locked quadrature frequency synthesizer with frequency calibration scheme for millimeter-wave TDD transceivers. IEEE J Sol-State Circ, 48(7):1710-1720.

[8]Feng GY, Boon CC, Meng FY, et al., 2017. Pole-converging intrastage bandwidth extension technique for wideband amplifiers. IEEE J Sol-State Circ, 52(3):769-780.

[9]Fritsche D, Tretter G, Carta C, et al., 2015. Millimeter-wave low-noise amplifier design in 28-nm low-power digital CMOS. IEEE Trans Microw Theory Techn, 63(6):1910-1922.

[10]Gao ZZ, Kang K, Zhao CX, et al., 2015. A broadband and equivalent-circuit model for millimeter-wave on-chip M:N six-port transformers and baluns. IEEE Trans Microw Theory Techn, 63(10):3109-3121.

[11]Ghilioni A, Mazzanti A, Svelto F, 2013. Analysis and design of mm-Wave frequency dividers based on dynamic latches with load modulation. IEEE J Sol-State Circ, 48(8):1842-1850.

[12]Guo ST, Xi TZ, Gui P, et al., 2016. A transformer feedback Gm-boosting technique for gain improvement and noise reduction in mm-Wave cascode LNAs. IEEE Trans Microw Theory Techn, 64(7):2080-2090.

[13]Hussein AI, Paramesh J, 2017. Design and self-calibration techniques for inductor-less millimeter-wave frequency dividers. IEEE J Sol-State Circ, 52(6):1521-1541.

[14]Imani A, Hashemi H, 2017. Distributed injection-locked frequency dividers. IEEE J Sol-State Circ, 52(8):2083-2093.

[15]Jang SL, Chang CW, Wun JY, et al., 2011. Quadrature injection-locked frequency dividers using dual-resonance resonator. IEEE Microw Wirel Compon Lett, 21(1):37-39.

[16]Khanzadi MR, Kuylenstierna D, Panahi A, et al., 2014. Calculation of the performance of communication systems from measured oscillator phase noise. IEEE Trans Circ Syst I, 61(5):1553-1565.

[17]Kim HT, Park BS, Song SS, et al., 2018. A 28-GHz CMOS direct conversion transceiver with packaged 2×4 antenna array for 5G cellular system. IEEE J Sol-State Circ, 53(5):1245-1259.

[18]Lee JG, Lee HJ, Kim SH, et al., 2017. 60GHz direct up- conversion mixer with wide IF bandwidth and high linearity in 65nm CMOS. IEEE Int Symp on Radio-Frequency Integration Technology, p.74-76.

[19]Levinger R, Sheinman B, Katz O, et al., 2014. A 71-86GHz multi-tanh up-conversion mixer achieving +1dBm OP1dB in 0.13 μm SiGe technology. IEEE MTT-S Int Microwave Symp, p.1-4.

[20]Li A, Zheng SY, Yin J, et al., 2014. A 21-48 GHz subharmonic injection-locked fractional-N frequency synthesizer for multiband point-to-point backhaul communications. IEEE J Sol-State Circ, 49(8):1785-1799.

[21]Li XY, Shekhar S, Allstot DJ, 2005. Gm-boosted common-gate LNA and differential colpitts VCO/QVCO in 0.18-μm CMOS. IEEE J Sol-State Circ, 40(12):2609-2619.

[22]Lin BL, Liu SI, 2011. Analysis and design of D-band injection-locked frequency dividers. IEEE J Sol-State Circ, 45(6): 1250-1264.

[23]Lin YH, Wang H, 2016. A 35.7-64.2 GHz low power Miller divider with weak inversion mixer in 65 nm CMOS. IEEE Microw Wirel Compon Lett, 26(11):948-950.

[24]Lin YS, Wen WC, Wang CC, 2014. 13.6 mW 79 GHz CMOS up-conversion mixer with 2.1 dB gain and 35.9 dB LO-RF isolation. IEEE Microw Wirel Compon Lett, 24(2): 126-128.

[25]Liu G, Schumacher H, 2013. Broadband millimeter-wave LNAs (47-77 GHz and 70-140 GHz) using a T-type matching topology. IEEE J Sol-State Circ, 48(9):2022-2029.

[26]Liu ZQ, Dong JY, Chen ZL, et al., 2018. A 62-90 GHz high linearity and low noise CMOS mixer using transformer-coupling cascode topology. IEEE Access, 6:19338-19344.

[27]Luo TN, Chen YJE, 2008. A 0.8-mW 55-GHz dual-injection-locked CMOS frequency divider. IEEE Trans Microw Theory Techn, 56(3):620-625.

[28]Mangraviti G, Khalaf K, Parvais B, et al., 2015. Design and tuning of coupled-LC mm-wave subharmonically injection-locked oscillators. IEEE Trans Microw Theory Techn, 63(7):2301-2312.

[29]Razavi B, 2004. A study of injection locking and pulling in oscillators. IEEE J Sol-State Circ, 39(9):1415-1424.

[30]Razavi B, 2011. RF Microelectronics (2nd Ed.). Prentice-Hall, Englewood Cliffs, NJ, USA.

[31]Reynaert P, Steyaert W, Standaert A, et al., 2017. mm-Wave and THz circuit design in standard CMOS technologies: challenges and opportunities. IEEE Asia Pacific Microwave Conf, p.85-88.

[32]Rong S, Luong HC, 2010. A 0.8 V 57 GHz-to-72 GHz differential input frequency divider with locking range optimization in 0.13-μm CMOS. Proc IEEE Asian Solid-State Circuits Conf, p.1-4.

[33]Sadhu B, Ferriss M, Valdes-Garcia A, 2015. A 52 GHz frequency synthesizer featuring a 2nd harmonic extraction technique that preserves VCO performance. IEEE J Sol-State Circ, 50(5):1214-1223.

[34]Shahramian S, Baeyens Y, Kaneda N, et al., 2013. A 70–100 GHz direct-conversion transmitter and receiver phased array chipset demonstrating 10 Gb/s wireless link. IEEE J Sol-State Circ, 48(5):1113-1125.

[35]Shin D, Koh KJ, 2018. An injection frequency-locked loop— autonomous injection frequency tracking loop with phase noise self-calibration for power-efficient mm-wave signal sources. IEEE J Sol-State Circ, 53(3):825-838.

[36]Takatsu K, Tamura H, Yamamoto T, et al., 2010. A 60-GHz 1.65mW 25.9% locking range multi-order LC oscillator based injection locked frequency divider in 65 nm CMOS. Proc IEEE Custom Integrated Circuits Conf, p.1-4.

[37]Vigilante M, Reynaert P, 2016a. Analysis and design of an E-band transformer-coupled low-noise quadrature VCO in 28-nm CMOS. IEEE Trans Microw Theory Techn, 64(4):1122-1132.

[38]Vigilante M, Reynaert P, 2016b. 20.10 A 68.1-to-96.4 GHz variable-gain low-noise amplifier in 28nm CMOS. IEEE Int Solid-State Circuits Conf, p.360-361.

[39]Vigilante M, Reynaert P, 2018. A wideband class-AB power amplifier with 29-57-GHz AM–PM compensation in 0.9-V 28-nm bulk CMOS. IEEE J Sol-State Circ, 53(5): 1288-1301.

[40]Won YS, Kim CH, Lee SC, 2015. A 24 GHz highly linear up-conversion mixer in CMOS 0.13 μm technology. IEEE Microw Wirel Compon Lett, 25(6):400-402.

[41]Wu QY, Quach T, Mattamana A, et al., 2013. A 10mW 37.8GHz current-redistribution BiCMOS VCO with an average FOMT of −193.5dBc/Hz. IEEE Int Solid-State Circuits Conf Digest of Technical Papers, p.150-151.

[42]Yanay N, Socher E, 2015. Wide tuning-range mm-wave voltage-controlled oscillator employing an artificial magnetic transmission line. IEEE Trans Microw Theory Techn, 63(4):1342-1352.

[43]Yao T, Gordon MQ, Tang KKW, et al., 2007. Algorithmic design of CMOS LNAs and PAs for 60-GHz radio. IEEE J Sol-State Circ, 42(5):1044-1057.

[44]Yeh HC, Chiong CC, Aloui S, et al., 2012. Analysis and design of millimeter-wave low-voltage CMOS cascode LNA with magnetic coupled technique. IEEE Trans Microw Theory Techn, 60(12):4066-4079.

[45]Yoo S, Choi S, Kim J, et al., 2018. A low-integrated-phase noise 27-30-GHz injection-locked frequency multiplier with an ultra-low-power frequency-tracking loop for mm-wave-band 5G transceivers. IEEE J Sol-State Circ, 53(2): 375-388.

[46]Yu YM, Liu HH, Wu YQ, et al., 2017. A 54.4-90 GHz low-noise amplifier in 65-nm CMOS. IEEE J Sol-State Circ, 52(11):2892-2904.

[47]Zhang JZ, Cheng YX, Zhao CX, et al., 2018. Analysis and design of ultra-wideband mm-wave injection-locked frequency dividers using transformer-based high-order resonators. IEEE J Sol-State Circ, 53(8):2177-2189.

[48]Zhang JZ, Liu HH, Wu YQ, et al., 2019. An injection- current-boosting locking-range enhancement technique for ultra-wideband mm-wave injection-locked frequency triplers. IEEE Trans Microw Theory Techn, 67(7):3174-3186.

[49]Zong ZR, Babaie M, Staszewski RB, 2016. A 60 GHz frequency generator based on a 20 GHz oscillator and an implicit multiplier. IEEE J Sol-State Circ, 51(5):1261-1273.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE