Full Text:   <7199>

Summary:  <360>

CLC number: TP273

On-line Access: 2022-06-17

Received: 2021-02-28

Revision Accepted: 2022-07-05

Crosschecked: 2021-08-24

Cited: 0

Clicked: 4589

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Huiming LI

https://orcid.org/0000-0002-5142-5151

Hao CHEN

https://orcid.org/0000-0002-7567-0063

Xiangke WANG

https://orcid.org/0000-0002-5074-7052

-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering  2022 Vol.23 No.6 P.909-919

http://doi.org/10.1631/FITEE.2100109


Affine formation tracking control of unmanned aerial vehicles


Author(s):  Huiming LI, Hao CHEN, Xiangke WANG

Affiliation(s):  College of Intelligence Science and Technology, National University of Defense Technology, Changsha 410073, China

Corresponding email(s):   huiminglhm@163.com, chenhao09@nudt.edu.cn, xkwang@nudt.edu.cn

Key Words:  Affine formation, Fixed-wing unmanned aerial vehicles, Multi-agent system


Huiming LI, Hao CHEN, Xiangke WANG. Affine formation tracking control of unmanned aerial vehicles[J]. Frontiers of Information Technology & Electronic Engineering, 2022, 23(6): 909-919.

@article{title="Affine formation tracking control of unmanned aerial vehicles",
author="Huiming LI, Hao CHEN, Xiangke WANG",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="23",
number="6",
pages="909-919",
year="2022",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.2100109"
}

%0 Journal Article
%T Affine formation tracking control of unmanned aerial vehicles
%A Huiming LI
%A Hao CHEN
%A Xiangke WANG
%J Frontiers of Information Technology & Electronic Engineering
%V 23
%N 6
%P 909-919
%@ 2095-9184
%D 2022
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.2100109

TY - JOUR
T1 - Affine formation tracking control of unmanned aerial vehicles
A1 - Huiming LI
A1 - Hao CHEN
A1 - Xiangke WANG
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 23
IS - 6
SP - 909
EP - 919
%@ 2095-9184
Y1 - 2022
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.2100109


Abstract: 
The affine formation tracking problem for fixed-wing unmanned aerial vehicles (UAVs) is considered in this paper, where fixed-wing UAVs are modeled as unicycle-type agents with asymmetrical speed constraints. A group of UAVs are required to generate and track a time-varying target formation obtained by affinely transforming a nominal formation. To handle this problem, a distributed control law based on stress matrix is proposed under the leader-follower control scheme. It is proved, theoretically, that followers can converge to the desired positions and achieve affine transformations while tracking diverse trajectories. Furthermore, a saturated control strategy is proposed to meet the speed constraints of fixed-wing UAVs, and numerical simulations are executed to verify the effectiveness of our proposed affine formation tracking control strategy in improving maneuverability.

无人机仿射编队跟踪控制研究

李慧铭,陈浩,王祥科
国防科技大学智能科学学院,中国长沙市,410073
摘要:本文聚焦固定翼无人机集群仿射编队跟踪控制问题,其中固定翼无人机被建模为具有非对称速度约束的独轮车。无人机集群控制目标是生成并跟踪一个由名义编队仿射变换得到的时变目标编队。针对这一目标,在领航跟随者编队控制框架下,提出一种基于应力矩阵的分布式编队控制策略,并从理论上证明,跟随者在跟踪不同飞行轨迹的同时,能够收敛到由领航者位置决定的期望位置,实现编队队形的仿射变换。进一步,为满足固定翼无人机飞行速度约束,提出一种基于饱和函数的控制策略。数值仿真结果证实,所提仿射编队控制策略能有效提高机动性。

关键词:仿射编队;固定翼无人机;多智能体系统

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Beard RW, Ferrin J, Humpherys J, 2014. Fixed wing UAV path following in wind with input constraints. IEEE Trans Contr Syst Technol, 22(6):2103-2117.

[2]Chen H, Wang XK, Shen LC, et al., 2021. Formation flight of fixed-wing UAV swarms: a group-based hierarchical approach. Chin J Aeronaut, 34(2):504-515.

[3]Chen LM, Mei J, Li CJ, et al., 2020. Distributed leader-follower affine formation maneuver control for high-order multiagent systems. IEEE Trans Autom Contr, 65(11):4941-4948.

[4]Connelly R, 2005. Generic global rigidity. Disc Comput Geom, 33(4):549-563.

[5]Fathian K, Summers TH, Gans NR, 2018. Distributed formation control and navigation of fixed-wing UAVs at constant altitude. Int Conf on Unmanned Aircraft Systems, p.300-307.

[6]Lin YJ, Lin ZY, Sun ZY, et al., 2021. A unified approach for finite-time global stabilization of affine, rigid and translational formation. IEEE Trans Autom Contr, early access.

[7]Lin ZY, Wang LL, Chen ZY, et al., 2016. Necessary and sufficient graphical conditions for affine formation control. IEEE Trans Autom Contr, 61(10):2877-2891.

[8]Liu ZH, Wang XK, Shen LC, et al., 2020. Mission-oriented miniature fixed-wing UAV swarms: a multilayered and distributed architecture. IEEE Trans Syst Man Cybern Syst, 52(3):1588-1602.

[9]Miao ZQ, Liu YH, Wang YN, et al., 2018. Distributed estimation and control for leader-following formations of nonholonomic mobile robots. IEEE Trans Autom Sci Eng, 15(4):1946-1954.

[10]Oh KK, Park MC, Ahn HS, 2015. A survey of multi-agent formation control. Automatica, 53:424-440.

[11]Onuoha O, Tnunay H, Ding ZT, 2019a. Affine formation maneuver control of multi-agent systems with triple-integrator dynamics. American Control Conf, p.5334-5339.

[12]Onuoha O, Tnunay H, Li ZH, et al., 2019b. Optimal affine formation control of linear multi-agent system. IEEE 15th Int Conf on Control and Automation, p.851-856.

[13]Paranjape AA, Chung SJ, Kim K, et al., 2018. Robotic herding of a flock of birds using an unmanned aerial vehicle. IEEE Trans Robot, 34(4):901-915.

[14]Ren W, Beard RW, Atkins EM, 2007. Information consensus in multivehicle cooperative control. IEEE Contr Syst Mag, 27(2):71-82.

[15]Wang XK, Shen LC, Liu ZH, et al., 2019. Coordinated flight control of miniature fixed-wing UAV swarms: methods and experiments. Sci China Inform Sci, 62(11):212204.

[16]Wang YZ, Shan M, Wang DW, 2020. Motion capability analysis for multiple fixed-wing UAV formations with speed and heading rate constraints. IEEE Trans Contr Netw Syst, 7(2):977-989.

[17]Wu S, 2013. Aircraft motion equation. In: Song SJ (Ed.), Aircraft Fight Control System. Beihang University Press, Beijing, China (in Chinese).

[18]Xu Y, Zhao SY, Luo DL, et al., 2018. Affine formation maneuver control of linear multi-agent systems with undirected interaction graphs. IEEE Conf on Decision and Control, p.502-507.

[19]Xu Y, Li DY, Luo DL, et al., 2019a. Affine formation maneuver tracking control of multiple second-order agents with time-varying delays. Sci China Technol Sci, 62(4):665-676.

[20]Xu Y, Luo DL, Li DY, et al., 2019b. Target-enclosing affine formation control of two-layer networked spacecraft with collision avoidance. Chin J Aeronaut, 32(12):2679-2693.

[21]Xu Y, Li DY, Luo DL, et al., 2019c. Two-layer distributed hybrid affine formation control of networked Euler-Lagrange systems. J Franklin Inst, 356(4):2172-2197.

[22]Xu Y, Lin ZY, Zhao SY, 2020. Distributed affine formation tracking control of multiple fixed-wing UAVs. 39th Chinese Control Conf, p.4712-4717.

[23]Zhao SL, Wang XK, Lin ZY, et al., 2020. Integrating vector field approach and input-to-state stability curved path following for unmanned aerial vehicles. IEEE Trans Syst Man Cybern Syst, 50(8):2897-2904.

[24]Zhao SY, 2018. Affine formation maneuver control of multiagent systems. IEEE Trans Autom Contr, 63(12):4140-4155.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE