Full Text:   <2374>

Summary:  <30>

CLC number: TP18

On-line Access: 2022-10-24

Received: 2021-03-04

Revision Accepted: 2022-10-24

Crosschecked: 2021-04-18

Cited: 0

Clicked: 4072

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Lingzhong ZHANG

https://orcid.org/0000-0002-7904-2187

Yuanyuan LI

https://orcid.org/0000-0001-8179-7426

Jungang LOU

https://orcid.org/0000-0002-5325-0404

Jianquan LU

https://orcid.org/0000-0003-4423-6034

-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering  2022 Vol.23 No.10 P.1522-1532

http://doi.org/10.1631/FITEE.2100122


Bipartite asynchronous impulsive tracking consensus for multi-agent systems


Author(s):  Lingzhong ZHANG, Yuanyuan LI, Jungang LOU, Jianquan LU

Affiliation(s):  School of Electrical Engineering and Automation, Changshu Institute of Technology, Changshu 215500, China; more

Corresponding email(s):   zhanglingzhong@cslg.edu.cn, yuanyuan.li.cn@gmail.com, loujungang0210@hotmail.com, jqluma@seu.edu.cn

Key Words:  Bipartite tracking, Multi-agent systems, Asynchronous impulsive, Consensus


Lingzhong ZHANG, Yuanyuan LI, Jungang LOU, Jianquan LU. Bipartite asynchronous impulsive tracking consensus for multi-agent systems[J]. Frontiers of Information Technology & Electronic Engineering, 2022, 23(10): 1522-1532.

@article{title="Bipartite asynchronous impulsive tracking consensus for multi-agent systems",
author="Lingzhong ZHANG, Yuanyuan LI, Jungang LOU, Jianquan LU",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="23",
number="10",
pages="1522-1532",
year="2022",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.2100122"
}

%0 Journal Article
%T Bipartite asynchronous impulsive tracking consensus for multi-agent systems
%A Lingzhong ZHANG
%A Yuanyuan LI
%A Jungang LOU
%A Jianquan LU
%J Frontiers of Information Technology & Electronic Engineering
%V 23
%N 10
%P 1522-1532
%@ 2095-9184
%D 2022
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.2100122

TY - JOUR
T1 - Bipartite asynchronous impulsive tracking consensus for multi-agent systems
A1 - Lingzhong ZHANG
A1 - Yuanyuan LI
A1 - Jungang LOU
A1 - Jianquan LU
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 23
IS - 10
SP - 1522
EP - 1532
%@ 2095-9184
Y1 - 2022
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.2100122


Abstract: 
In this study, we discuss how multi-agent systems (MASs) with a leader can achieve distributed bipartite tracking consensus using asynchronous impulsive control strategies. The proposed asynchronous impulsive control approach does not require the impulse to occur simultaneously for all agents. The communication links between neighboring nodes of MASs are antagonistic. When the leader’s control input is non-zero, sufficient conditions are obtained to achieve bipartite asynchronous impulsive tracking consensus in closed-loop MASs. More extensive ranges of asynchronous impulsive effects are discussed, and the designed controller’s feedback can effectively work against adverse impulsive permutation. Simple algebraic conditions for estimating the impulsive gain boundary and asynchronous impulsive interval are presented. Theoretical results are demonstrated with illustrative examples.

多智能体系统的二分异步脉冲跟踪一致性

张玲忠1,李媛媛2,楼俊钢3,卢剑权4
1常熟理工学院电气与自动化工程学院,中国常熟市,215500
2南京林业大学应用数学系,中国南京市,210037
3湖州师范学院信息工程学院,中国湖州市,313000
4东南大学数学学院,中国南京市,210096
摘要:本文研究了多智能体系统如何通过实施异步脉冲控制输入实现分布式二分领导跟随一致性。所提出的异步脉冲控制方法不要求所有多智能体的脉冲信号同时发生。多智能体系统相邻节点之间的通信链路存在合作或竞争关系。在领导者控制输入非零的情况下,得到了在闭环多智能体系统中实现二分异步脉冲跟踪一致性的充分条件。本文讨论了更广泛的异步脉冲效应范围。所设计的控制器反馈部分可有效对抗脉冲扰动。给出了估计脉冲增益边界和异步脉冲区间的简单代数条件。最后,通过数值仿真验证了理论结果的合理性。

关键词:二分追踪;多智能体系统;异步脉冲;一致性

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Altafini C, 2013. Consensus problems on networks with antagonistic interactions. IEEE Trans Automat Contr, 58(4):935-946.

[2]Du HB, Wen GH, Wu D, et al., 2020. Distributed fixed-time consensus for nonlinear heterogeneous multi-agent systems. Automatica, 113:108797.

[3]Gao F, Chen WS, Li ZW, et al., 2020. Neural network-based distributed cooperative learning control for multiagent systems via event-triggered communication. IEEE Trans Neur Netw Learn Syst, 31(2):407-419.

[4]Guan ZH, Hu B, Chi M, et al., 2014. Guaranteed performance consensus in second-order multi-agent systems with hybrid impulsive control. Automatica, 50(9):2415-2418.

[5]Han XP, Zhao YS, Li XD, 2020. A survey on complex dynamical networks with impulsive effects. Front Inform Technol Electron Eng, 21(2):199-219.

[6]He WL, Qian F, Lam J, et al., 2015. Quasi-synchronization of heterogeneous dynamic networks via distributed impulsive control: error estimation, optimization and design. Automatica, 62:249-262.

[7]Hong HF, Wang H, Wang ZL, et al., 2019. Finite-time and fixed-time consensus problems for second-order multi-agent systems with reduced state information. Sci China Inform Sci, 62(11):212201.

[8]Hu X, Zhang ZF, Li CD, 2021. Consensus of multi-agent systems with dynamic join characteristics under impulsive control. Front Inform Technol Electron Eng, 22(1):120-133.

[9]Jadbabaie A, Lin J, Morse AS, 2003. Coordination of groups of mobile autonomous agents using nearest neighbor rules. IEEE Trans Automat Contr, 48(6):988-1001.

[10]Ji XR, Lu JQ, Lou JG, et al., 2020. A unified criterion for global exponential stability of quaternion-valued neural networks with hybrid impulses. Int J Robust Nonl Contr, 30(18):8098-8116.

[11]Jiang BX, Lu JQ, Liu Y, 2020. Exponential stability of delayed systems with average-delay impulses. SIAM J Contr Optim, 58(6):3763-3784.

[12]Jiang FC, Liu B, Wu YJ, et al., 2018. Asynchronous consensus of second-order multi-agent systems with impulsive control and measurement time-delays. Neurocomputing, 275:932-939.

[13]Jiang Y, Zhang HW, Chen J, 2017. Sign-consensus of linear multi-agent systems over signed directed graphs. IEEE Trans Ind Electron, 64(6):5075-5083.

[14]Lakshmikantham V, Bainov DD, Simeonov PS, 1989. Theory of Impulsive Differential Equations. World Scientific Publishing, Singapore Teaneck, USA.

[15]Li K, Hua CC, You X, et al., 2020. Output feedback-based consensus control for nonlinear time delay multiagent systems. Automatica, 111:108669.

[16]Li XD, Ho DWC, Cao JD, 2019a. Finite-time stability and settling-time estimation of nonlinear impulsive systems. Automatica, 99:361-368.

[17]Li XD, Yang XY, Huang TW, 2019b. Persistence of delayed cooperative models: impulsive control method. Appl Math Comput, 342:130-146.

[18]Li XD, Peng DX, Cao JD, 2020. Lyapunov stability for impulsive systems via event-triggered impulsive control. IEEE Trans Automat Contr, 65(11):4908-4913.

[19]Li YY, 2017. Impulsive synchronization of stochastic neural networks via controlling partial states. Neur Process Lett, 46(1):59-69.

[20]Liu F, Song Q, Wen GH, et al., 2018. Bipartite synchronization in coupled delayed neural networks under pinning control. Neur Netw, 108:146-154.

[21]Liu ZW, Hu X, Ge MF, et al., 2019. Asynchronous impulsive control for consensus of second-order multi-agent networks. Commun Nonl Sci Numer Simul, 79:104892.

[22]Lu JQ, Ho DWC, Cao JD, 2010. A unified synchronization criterion for impulsive dynamical networks. Automatica, 46(7):1215-1221.

[23]Lu JQ, Wang ZD, Cao JD, et al., 2012. Pinning impulsive stabilization of nonlinear dynamical networks with time-varying delay. Int J Bifurcat Chaos, 22(7):1250176.

[24]Lu WL, Li X, Rong ZH, 2010. Global stabilization of complex networks with digraph topologies via a local pinning algorithm. Automatica, 46(1):116-121.

[25]Meng DY, 2017. Bipartite containment tracking of signed networks. Automatica, 79:282-289.

[26]Ning BD, Han QL, Zuo ZY, 2019. Practical fixed-time consensus for integrator-type multi-agent systems: a time base generator approach. Automatica, 105:406-414.

[27]Ning BD, Han QL, Zuo ZY, 2020. Bipartite consensus tracking for second-order multi-agent systems: a time-varying function based preset-time approach. IEEE Trans Automat Contr, 66(6):2739-2745.

[28]Pan LL, Shao HB, Xi YG, et al., 2021. Bipartite consensus problem on matrix-valued weighted directed networks. Sci China Inform Sci, 64(4):149204.

[29]Tan XG, Cao JD, Li XD, 2019. Consensus of leader-following multiagent systems: a distributed event-triggered impulsive control strategy. IEEE Trans Cybern, 49(3):792-801.

[30]Wang P, Li XC, Wang N, et al., 2021. Almost periodic synchronization of quaternion-valued fuzzy cellular neural networks with leakage delays. Fuzzy Sets Syst, 426:46-65.

[31]Wang YQ, Lu JQ, Liang JL, et al., 2019. Pinning synchronization of nonlinear coupled Lur’e networks under hybrid impulses. IEEE Trans Circ Syst II, 66(3):432-436.

[32]Wen GH, Wang H, Yu XH, et al., 2018. Bipartite tracking consensus of linear multi-agent systems with a dynamic leader. IEEE Trans Circ Syst II, 65(9):1204-1208.

[33]Yang D, Li XD, Qiu JL, 2019. Output tracking control of delayed switched systems via state-dependent switching and dynamic output feedback. Nonl Anal Hybrid Syst, 32:294-305.

[34]Yang T, Chua LO, 1997. Impulsive stabilization for control and synchronization of chaotic systems: theory and application to secure communication. IEEE Trans Circ Syst I, 44(10):976-988.

[35]Yang XS, Lu JQ, Ho DWC, et al., 2018. Synchronization of uncertain hybrid switching and impulsive complex networks. Appl Math Model, 59:379-392.

[36]Yang XS, Li XD, Lu JQ, et al., 2020. Synchronization of time-delayed complex networks with switching topology via hybrid actuator fault and impulsive effects control. IEEE Trans Cybern, 50(9):4043-4052.

[37]Yang ZQ, Pan XF, Zhang Q, et al., 2021. Finite-time formation control for first-order multi-agent systems with region constraints. Front Inform Technol Electron Eng, 22(1):134-140.

[38]Yu WW, Li Y, Wen GH, et al., 2017. Observer design for tracking consensus in second-order multi-agent systems: fractional order less than two. IEEE Trans Automat Contr, 62(2):894-900.

[39]Zahreddine Z, 2003. Matrix measure and application to stability of matrices and interval dynamical systems. Int J Math Math Sci, 2003:937084.

[40]Zhang H, Ji HH, Ye ZY, et al., 2017. Impulsive consensus of multi-agent systems with stochastically switching topologies. Nonl Anal Hybrid Syst, 26:212-224.

[41]Zhang LZ, Yang YQ, 2020. Impulsive effects on bipartite quasi synchronization of extended Caputo fractional order coupled networks. J Franklin Inst, 357(7):4328-4348.

[42]Zhao L, Yang GH, 2020. Cooperative adaptive fault-tolerant control for multi-agent systems with deception attacks. J Franklin Inst, 357(6):3419-3433.

[43]Zhou KM, Doyle JC, 1998. Essentials of Robust Control. Prentice Hall, Upper Saddle River, USA.

[44]Zhu W, Zhou QH, Li QD, 2020. Asynchronous consensus of linear multi-agent systems with impulses effect. Commun Nonl Sci Numer Simul, 82:105044.

[45]Zhu YN, Yu WW, Wen GH, et al., 2020. Distributed Nash equilibrium seeking in an aggregative game on a directed graph. IEEE Trans Automat Contr, 66(6):2746-2753.

[46]Zuo ZY, Han QL, Ning BD, et al., 2018. An overview of recent advances in fixed-time cooperative control of multiagent systems. IEEE Trans Ind Inform, 14(6):2322-2334.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2023 Journal of Zhejiang University-SCIENCE