Full Text:   <1226>

Summary:  <1221>

CLC number: TP182

On-line Access: 2019-01-30

Received: 2018-09-30

Revision Accepted: 2018-12-25

Crosschecked: 2019-01-08

Cited: 0

Clicked: 3708

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Mao-bin Lu

https://orcid.org/0000-0001-5730-5786

-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering  2019 Vol.20 No.1 P.88-94

http://doi.org/10.1631/FITEE.1800611


Leader-following consensus of second-order nonlinear multi-agent systems subject to disturbances


Author(s):  Mao-bin Lu, Lu Liu

Affiliation(s):  itfootnotesize School of Automation, Beijing Institute of Technology, Beijing 100081, China; more

Corresponding email(s):   lumaobin@bit.edu.cn, luliu45@cityu.edu.hk

Key Words:  Multi-agent systems, Leader-following consensus, Distributed control


Mao-bin Lu, Lu Liu. Leader-following consensus of second-order nonlinear multi-agent systems subject to disturbances[J]. Frontiers of Information Technology & Electronic Engineering, 2019, 20(1): 88-94.

@article{title="Leader-following consensus of second-order nonlinear multi-agent systems subject to disturbances",
author="Mao-bin Lu, Lu Liu",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="20",
number="1",
pages="88-94",
year="2019",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.1800611"
}

%0 Journal Article
%T Leader-following consensus of second-order nonlinear multi-agent systems subject to disturbances
%A Mao-bin Lu
%A Lu Liu
%J Frontiers of Information Technology & Electronic Engineering
%V 20
%N 1
%P 88-94
%@ 2095-9184
%D 2019
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.1800611

TY - JOUR
T1 - Leader-following consensus of second-order nonlinear multi-agent systems subject to disturbances
A1 - Mao-bin Lu
A1 - Lu Liu
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 20
IS - 1
SP - 88
EP - 94
%@ 2095-9184
Y1 - 2019
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.1800611


Abstract: 
In this study, we investigate the leader-following consensus problem of a class of heterogeneous second-order nonlinear multi-agent systems subject to disturbances. In particular, the nonlinear systems contain uncertainties that can be linearly parameterized. We propose a class of novel distributed control laws, which depends on the relative state of the system and thus can be implemented even when no communication among agents exists. By Barbalat's lemma, we demonstrate that consensus of the second-order nonlinear multi-agent system can be achieved by the proposed distributed control law. The effectiveness of the main result is verified by its application to consensus control of a group of Van der Pol oscillators.

具有领航者的二阶非线性多智能体系统在外部扰动下的同步控制

摘要:研究了一类异质二阶非线性多智能体系统在外部扰动影响下的同步控制问题。其中,非线性系统允许包含可线性参数化的未知参数。提出一种新颖的分布式控制器,此控制器依赖于系统的相对状态,因此可以在多智能体系统之间没有通讯的情况下应用。通过Barbalat引理,证明此分布式控制器可求解二阶非线性多智能体系统的同步控制问题。对一组Van der Pol振荡器进行同步控制的应用示例验证了主要结果的有效性。

关键词:多智能体系统;同步控制;分布式控制

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Cheng L, Hou ZG, Tan M, et al., 2010. Neural-network-based adaptive leader-following control for multiagent systems with uncertainties. IEEE Trans Neur Netw, 21(8):linebreak 1351-1358.

[2]Deng F, Guan S, Yue X, et al., 2017. Energy-based sound source localization with low power consumption in wireless sensor networks. IEEE Trans Ind Electron, 64(6):linebreak 4894-4902.

[3]Godsil C, Royle G, 2001. Algebraic Graph Theory. Springer Berlin Heidelberg.

[4]Hu JP, Hong YG, 2007. Leader-following coordination of multi-agent systems with coupling time delays. Phys A, 374(2):853-863.

[5]Jadbabaie A, Lin J, Morse AS, 2003. Coordination of groups of mobile autonomous agents using nearest neighbor rules. IEEE Trans Autom Contr, 48(6):988-1001.

[6]Liu W, Huang J, 2016. Leader-following consensus for uncertain second-order nonlinear multi-agent systems. Contr Theory Technol, 14(4):279-286.

[7]Lu MB, Liu L, 2017. Consensus of linear multi-agent systems subject to communication delays and switching networks. Int J Rob Nonl Contr, 27(9):1379-1396.

[8]Lu MB, Liu L, 2018. Robust consensus of a class of heterogeneous nonlinear uncertain multi-agent systems subject to communication constraints. Chinese Control and Decision Conf, p.74-81.

[9]Meng ZY, Lin ZL, Ren W, 2013. Robust cooperative tracking for multiple non-identical second-order nonlinear systems. Automatica, 49(8):2363-2372.

[10]Moreau L, 2004. Stability of continuous-time distributed consensus algorithms. Proc $43^rm rd$ IEEE Conf on Decision and Control, p.3998-4003.

[11]Olfati-Saber R, 2006. Flocking for multi-agent dynamic systems: algorithms and theory. IEEE Trans Autom Contr, 51(3):401-420.

[12]Olfati-Saber R, Murray RM, 2004. Consensus problems in networks of agents with switching topology and time-delays. IEEE Trans Autom Contr, 49(9):1520-1533.

[13]Ren W, Beard RW, 2005. Consensus seeking in multiagent systems under dynamically changing interaction topologies. IEEE Trans Autom Contr, 50(5):655-661.

[14]Slotine JJE, Li WP, 1991. Applied Nonlinear Control. Prentice-Hall.

[15]Song Q, Cao JD, Yu WW, 2010. Second-order leader-following consensus of nonlinear multi-agent systems via pinning control. Syst Contr Lett, 59(9):553-562.

[16]Su YF, 2015. Cooperative global output regulation of second-order nonlinear multi-agent systems with unknown control direction. IEEE Trans Autom Contr, 60(12):3275-3280.

[17]Su YF, Huang J, 2012. Cooperative output regulation of linear multi-agent systems. IEEE Trans Autom Contr, 57(4):1062-1066.

[18]Su YF, Huang J, 2013. Cooperative global output regulation of heterogeneous second-order nonlinear uncertain multi-agent systems. Automatica, 49(11):3345-3350.

[19]Tuna SE, 2008. LQR-based coupling gain for synchronization of linear systems. https://arxiv.org/abs/0801.3390

[20]Wang CR, Ji HB, 2015. Robust consensus tracking for a class of heterogeneous second-order nonlinear multi-agent systems. Int J Rob Nonl Contr, 25(17):3367-3383.

[21]Wieland P, Sepulchre R, Allgöwer F, 2011. An internal model principle is necessary and sufficient for linear output synchronization. Automatica, 47(5):1068-1074.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2022 Journal of Zhejiang University-SCIENCE