Full Text:   <802>

Summary:  <32>

CLC number: TP391

On-line Access: 2022-07-21

Received: 2021-08-10

Revision Accepted: 2022-07-21

Crosschecked: 2021-11-24

Cited: 0

Clicked: 1184

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Han WANG

https://orcid.org/0000-0002-9348-5806

Hai LIN

https://orcid.org/0000-0002-1682-8465

-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering  2022 Vol.23 No.7 P.1098-1109

http://doi.org/10.1631/FITEE.2100387


Enhanced solution to the surface–volume–surface EFIE for arbitrary metal–dielectric composite objects


Author(s):  Han WANG, Mingjie PANG, Hai LIN

Affiliation(s):  State Key Laboratory of CAD & CG, Zhejiang University, Hangzhou 310027, China

Corresponding email(s):   wanghanaviva@zju.edu.cn, mjpang@zju.edu.cn, lin@cad.zju.edu.cn

Key Words:  Composite object, Integral equation, Method of moments (MoM), Addition theorem, Iterative method


Han WANG, Mingjie PANG, Hai LIN. Enhanced solution to the surface–volume–surface EFIE for arbitrary metal–dielectric composite objects[J]. Frontiers of Information Technology & Electronic Engineering, 2022, 23(7): 1098-1109.

@article{title="Enhanced solution to the surface–volume–surface EFIE for arbitrary metal–dielectric composite objects",
author="Han WANG, Mingjie PANG, Hai LIN",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="23",
number="7",
pages="1098-1109",
year="2022",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.2100387"
}

%0 Journal Article
%T Enhanced solution to the surface–volume–surface EFIE for arbitrary metal–dielectric composite objects
%A Han WANG
%A Mingjie PANG
%A Hai LIN
%J Frontiers of Information Technology & Electronic Engineering
%V 23
%N 7
%P 1098-1109
%@ 2095-9184
%D 2022
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.2100387

TY - JOUR
T1 - Enhanced solution to the surface–volume–surface EFIE for arbitrary metal–dielectric composite objects
A1 - Han WANG
A1 - Mingjie PANG
A1 - Hai LIN
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 23
IS - 7
SP - 1098
EP - 1109
%@ 2095-9184
Y1 - 2022
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.2100387


Abstract: 
The surface–volume–surface electric field integral equation (SVS-EFIE) can lead to complex equations, laborious implementation, and unacceptable computational complexity in the method of moments (MoM). Therefore, a general matrix equation (GME) is proposed for electromagnetic scattering from arbitrary metal–dielectric composite objects, and its enhanced solution is presented in this paper. In previous works, MoM solution formulation of SVS-EFIE considering only three-region metal–dielectric composite scatters was presented, and the two-stage process resulted in two integral operators in SVS-EFIE, which is arduous to implement and is incapable of reducing computational complexity. To address these difficulties, GME, which is versatile for homogeneous objects and composite objects consisting of more than three sub-regions, is proposed for the first time. Accelerated solving policies are proposed for GME based on coupling degree concerning the spacing between sub-regions, and the coupling degree standard can be adaptively set to balance the accuracy and efficiency. In this paper, the reformed addition theorem is applied for the strong coupling case, and the iterative method is presented for the weak coupling case. Parallelism can be easily applied in the enhanced solution. Numerical results demonstrate that the proposed method requires only 11.6% memory and 11.8% CPU time on average compared to the previous direct solution.

任意金属–介电混合体面体面电场积分方程(SVS-EFIE)的增强解

王涵,庞铭杰,林海
浙江大学计算机辅助设计与图形学国家重点实验室,中国杭州市,310027
摘要:利用矩量法求解面体面电场积分方程(SVS-EFIE),公式复杂,实现困难,算法复杂度高。本文提出求解任意金属–介电混合体电磁散射问题的通用矩阵方程(GME),并给出该方程的增强解。矩量法只考虑包含3个区域的金属–介电混合体,且SVS-EFIE的两步过程导致两个积分符号,难以实现且算法复杂度高。为解决该问题,本文首次提出能够用于分析均匀介质体和超过3个区域金属–介电混合体的GME方法。提出基于耦合度和子区域间距相关的GME加速求解策略,并自适应设置耦合度标准以平衡精度和效率。将变形后的加法定理用于强耦合情况,将迭代法用于弱耦合情况。并行性可以方便地应用于该增强解。数值结果表明,与直接解相比,该方法平均只需11.6%的内存和11.8%的中央处理器时间。

关键词:混合体;积分方程;矩量法;加法定理;迭代

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Bucci OM, Gennarelli C, Savarese C, 1991. Optimal interpolation of radiated fields over a sphere. IEEE Trans Antenn Propag, 39(11):1633-1643.

[2]Chew WC, Jin JM, Michielssen E, et al., 2001. Fast and Efficient Algorithms in Computational Electromagnetics. Artech House, Boston, USA.

[3]Dagum L, Menon R, 1998. OpenMP: an industry standard API for shared-memory programming. IEEE Comput Sci Eng, 5(1):46-55.

[4]Ergul Ö, Gurel L, 2009. Comparison of integral-equation formulations for the fast and accurate solution of scattering problems involving dielectric objects with the multilevel fast multipole algorithm. IEEE Trans Antenn Propag, 57(1):176-187.

[5]Gholami R, Okhmatovski V, 2020. Surface–volume–surface EFIE formulation for fast direct solution of scattering problems on general 3-D composite metal–dielectric objects. IEEE Trans Antenn Propag, 68(7):5742-5747.

[6]Gholami R, Menshov A, Okhmatovski VI, 2019. H-matrix accelerated solution of surface–volume–surface EFIE for fast electromagnetic analysis on 3-D composite dielectric objects. IEEE J Multisc Multiphys Comput Techn, 4:152-162.

[7]Goni O, Okhmatovski VI, 2021. Analytic solution of surface–volume–surface electric field integral equation on dielectric sphere and analysis of its spectral properties. IEEE Trans Antenn Propag, early access.

[8]Hariharan B, Aluru S, Shanker B, 2002. A scalable parallel fast multipole method for analysis of scattering from perfect electrically conducting surfaces. Proc ACM/IEEE Conf on Supercomputing, Article 42.

[9]Lori FSH, Menshov A, Gholami R, et al., 2018. Novel single-source surface integral equation for scattering problems by 3-D dielectric objects. IEEE Trans Antenn Propag, 66(2):797-807.

[10]Lu CC, 2003. A fast algorithm based on volume integral equation for analysis of arbitrarily shaped dielectric radomes. IEEE Trans Antenn Propag, 51(3):606-612.

[11]Lu CC, Chew WC, 2000. A coupled surface-volume integral equation approach for the calculation of electromagnetic scattering from composite metallic and material targets. IEEE Trans Antenn Propag, 48(12):1866-1868.

[12]Meagher D, 1982. Geometric modeling using octree encoding. Comput Graph Image Process, 19(2):129-147.

[13]Menshov A, Okhmatovski V, 2013. New single-source surface integral equations for scattering on penetrable cylinders and current flow modeling in 2-D conductors. IEEE Trans Microw Theory Techn, 61(1):341-350.

[14]Poggio AJ, Miller EM, 1973. Integral equation solutions of three-dimensional scattering problems. In: Mittra R (Ed.), Computer Techniques for Electromagnetics: a Volume in International Series of Monographs in Electrical Engineering. Pergamon, New York, USA, p.159-264.

[15]Rao S, Wilton D, Glisson A, 1982. Electromagnetic scattering by surfaces of arbitrary shape. IEEE Trans Antenn Propag, 30(3):409-418.

[16]Sarvas J, 2003. Performing interpolation and anterpolation entirely by fast Fourier transform in the 3-D multilevel fast multipole algorithm. SIAM J Numer Anal, 41(6):2180-2196.

[17]Song J, Lu CC, Chew WC, 1997. Multilevel fast multipole algorithm for electromagnetic scattering by large complex objects. IEEE Trans Antenn Propag, 45(10):1488-1493.

[18]Song JM, Chew WC, 1995. Multilevel fast-multipole algorithm for solving combined field integral equations of electromagnetic scattering. Microw Opt Technol Lett, 10(1):14-19.

[19]Xie FS, Li WD, 2018. A method of VSIE for electromagnetic scattering by planar composite conductor-dielectric structures. Proc IEEE MTT-S Int Wireless Symp, p.1-4.

[20]Zhao KZ, Vouvakis MN, Lee JF, 2005. The adaptive cross approximation algorithm for accelerated method of moments computations of EMC problems. IEEE Trans Electromagn Compat, 47(4):763-773.

[21]Zheng SC, Gholami R, Okhmatovski VI, 2018. Surface-volume-surface electric field integral equation for solution of scattering problems on 3-D dielectric objects in multilayered media. IEEE Trans Microw Theory Techn, 66(12):5399-5414.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2022 Journal of Zhejiang University-SCIENCE