Full Text:   <5086>

Summary:  <482>

Suppl. Mater.: 

CLC number: TP24

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 2022-03-06

Cited: 0

Clicked: 2714

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Weibin CHEN

https://orcid.org/0000-0001-5840-2019

Yangyang CHEN

https://orcid.org/0000-0003-0136-0174

-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering  2022 Vol.23 No.10 P.1511-1521

http://doi.org/10.1631/FITEE.2100476


Finite-time coordinated path-following control of leader-following multi-agent systems


Author(s):  Weibin CHEN, Yangyang CHEN, Ya ZHANG

Affiliation(s):  School of Automation, Southeast University, Nanjing 210096, China; more

Corresponding email(s):   jari_chris@163.com, yychen@seu.edu.cn

Key Words:  Finite-time, Coordinated path-following, Multi-agent systems, Barrier function


Weibin CHEN, Yangyang CHEN, Ya ZHANG. Finite-time coordinated path-following control of leader-following multi-agent systems[J]. Frontiers of Information Technology & Electronic Engineering, 2022, 23(10): 1511-1521.

@article{title="Finite-time coordinated path-following control of leader-following multi-agent systems",
author="Weibin CHEN, Yangyang CHEN, Ya ZHANG",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="23",
number="10",
pages="1511-1521",
year="2022",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.2100476"
}

%0 Journal Article
%T Finite-time coordinated path-following control of leader-following multi-agent systems
%A Weibin CHEN
%A Yangyang CHEN
%A Ya ZHANG
%J Frontiers of Information Technology & Electronic Engineering
%V 23
%N 10
%P 1511-1521
%@ 2095-9184
%D 2022
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.2100476

TY - JOUR
T1 - Finite-time coordinated path-following control of leader-following multi-agent systems
A1 - Weibin CHEN
A1 - Yangyang CHEN
A1 - Ya ZHANG
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 23
IS - 10
SP - 1511
EP - 1521
%@ 2095-9184
Y1 - 2022
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.2100476


Abstract: 
This paper presents applications of the continuous feedback method to achieve path-following and a formation moving along the desired orbits within a finite time. It is assumed that the topology for the virtual leader and followers is directed. An additional condition of the so-called barrier function is designed to make all agents move within a limited area. A novel continuous finite-time path-following control law is first designed based on the barrier function and backstepping. Then a novel continuous finite-time formation algorithm is designed by regarding the path-following errors as disturbances. The settling-time properties of the resulting system are studied in detail and simulations are presented to validate the proposed strategies.

领导-跟随者多智能体系统有限时间协同路径跟踪控制

陈卫彬1,3,陈杨杨1,2,张亚1,2
1东南大学自动化学院,中国南京市,210096
2东南大学复杂工程系统测量与控制教育部重点实验室,中国南京市,210096
3江苏自动化研究所机器人事业部,中国连云港市,222061
摘要:本文研究了连续反馈方法在有限时间内同时实现路径跟踪和沿期望轨道编队运动控制的应用。假设虚拟领导者和跟随者之间的拓扑结构是有方向的。设计了一种称为障碍函数的附件条件,使所有智能体在一个有限的区域内移动。首先,基于障碍函数和反步法,设计了一种新型的连续有限时间路径跟踪控制算法。然后,通过将路径跟踪误差视为扰动,设计了一种新型的连续有限时间编队控制算法。详细研究了所得系统的稳定时间特性,并对所提策略进行仿真验证。

关键词:有限时间;协同路径跟踪;多智能体系统;障碍函数

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Bertozzi AL, Kemp M, Marthaler D, 2005. Determining environmental boundaries: asynchronous communication and physical scales. In: Kumar V, Leonard N, Morse AS (Eds.), Cooperative Control. Springer, Berlin, p.25-42.

[2]Bhat SP, Bernstein DS, 2000. Finite-time stability of continuous autonomous systems. SIAM J Contr Optim, 38(3):751-766.

[3]Cao YC, Ren W, 2012. Distributed coordinated tracking with reduced interaction via a variable structure approach. IEEE Trans Autom Contr, 57(1):33-48.

[4]Cao YC, Ren W, Li Y, 2009. Distributed discrete-time coordinated tracking with a time-varying reference state and limited communication. Automatica, 45(5):1299-1305.

[5]Cao YC, Ren W, Meng ZY, 2010. Decentralized finite-time sliding mode estimators and their applications in decentralized finite-time formation tracking. Syst Contr Lett, 59(9):522-529.

[6]Chen YY, Tian YP, 2015. Formation tracking and attitude synchronization control of underactuated ships along closed orbits. Int J Robust Nonl Contr, 25(16):3023-3044.

[7]Chen YY, Chen KW, Astolfi A, 2021a. Adaptive formation tracking control of directed networked vehicles in a time-varying flowfield. J Guid Contr Dyn, 44(10):1883-1891.

[8]Chen YY, Chen KW, Astolfi A, 2021b. Adaptive formation tracking control for first-order agents in a time-varying flowfield. IEEE Trans Autom Contr, 67(5):2481-2488.

[9]Dou LQ, Yang C, Wang DD, et al., 2019. Distributed finite-time formation control for multiple quadrotors via local communications. Int J Robust Nonl Contr, 29(16):5588-5608.

[10]Du HB, Li SH, Lin XZ, 2013. Finite-time formation control of multiagent systems via dynamic output feedback. Int J Robust Nonl Contr, 23(14):1609-1628.

[11]Du HB, Wen GH, Cheng YY, et al., 2017. Distributed finite-time cooperative control of multiple high-order nonholonomic mobile robots. IEEE Trans Neur Netw Learn Syst, 28(12):2998-3006.

[12]Fiorelli E, Leonard NE, Bhatta P, et al., 2006. Multi-AUV control and adaptive sampling in Monterey bay. IEEE J Oceanic Eng, 31(4):935-948.

[13]Ghabcheloo R, 2007. Coordinated Path Following of Multiple Autonomous Vehicles. PhD Dissertation, Universidade de Lisbon, Lisboa, Portugal.

[14]Guan ZH, Sun FL, Wang YW, et al., 2012. Finite-time consensus for leader-following second-order multi-agent networks. IEEE Trans Circ Syst I Regul Pap, 59(11):2646-2654.

[15]Huang JS, Wen CY, Wang W, et al., 2015. Adaptive finite-time consensus control of a group of uncertain nonlinear mechanical systems. Automatica, 51:292-301.

[16]Khoo S, Xie LH, Man ZH, 2009. Robust finite-time consensus tracking algorithm for multirobot systems. IEEE/ASME Trans Mechatron, 14(2):219-228.

[17]Li SH, Du HB, Lin XZ, 2011. Finite-time consensus algorithm for multi-agent systems with double-integrator dynamics. Automatica, 47(8):1706-1712.

[18]Li TS, Zhao R, Chen CLP, et al., 2018. Finite-time formation control of under-actuated ships using nonlinear sliding mode control. IEEE Trans Cybern, 48(11):3243-3253.

[19]Peng ZH, Wang D, Chen ZY, et al., 2013. Adaptive dynamic surface control for formations of autonomous surface vehicles with uncertain dynamics. IEEE Trans Contr Syst Technol, 21(2):513-520.

[20]Qian CJ, Lin W, 2001. A continuous feedback approach to global strong stabilization of nonlinear systems. IEEE Trans Autom Contr, 46(7):1061-1079.

[21]Wang L, Xiao F, 2010. Finite-time consensus problems for networks of dynamic agents. IEEE Trans Autom Contr, 55(4):950-955.

[22]Wang N, Li H, 2020. Leader-follower formation control of surface vehicles: a fixed-time control approach. ISA Trans, 124(5):356-364.

[23]Xiao F, Wang L, Chen J, et al., 2009. Finite-time formation control for multi-agent systems. Automatica, 45(11):2605-2611.

[24]Yu JL, Dong XW, Li QD, et al., 2018. Practical time-varying formation tracking for second-order nonlinear multiagent systems with multiple leaders using adaptive neural networks. IEEE Trans Neur Netw Learn Syst, 29(12):6015-6025.

[25]Zhang FM, Leonard NE, 2007. Coordinated patterns of unit speed particles on a closed curve. Syst Contr Lett, 56(6):397-407.

[26]Zhang FX, Chen YY, 2022. Finite-time tracking control for nonaffine nonlinear pure-feedback systems with a prescribed performance. Int J Robust Nonl Contr, 32(4):2212-2232.

[27]Zhang Y, Tian YP, 2009. Consentability and protocol design of multi-agent systems with stochastic switching topology. Automatica, 45(5):1195-1201.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE