Full Text:   <315>

Summary:  <18>

CLC number: TP181

On-line Access: 2022-12-14

Received: 2022-06-29

Revision Accepted: 2022-12-17

Crosschecked: 2022-09-22

Cited: 0

Clicked: 188

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Yahong Han

https://orcid.org/0000-0003-2768-1398

Yikang WEI

https://orcid.org/0000-0003-3113-9817

-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering  2022 Vol.23 No.12 P.1780-1794

http://doi.org/10.1631/FITEE.2200284


Dual collaboration for decentralized multi-source domain adaptation


Author(s):  Yikang WEI, Yahong HAN

Affiliation(s):  College of Intelligence and Computing, Tianjin University, Tianjin 300350, China; more

Corresponding email(s):   yikang@tju.edu.cn, yahong@tju.edu.cn

Key Words:  Multi-source domain adaptation, Data decentralization, Domain shift, Negative transfer


Yikang WEI, Yahong HAN. Dual collaboration for decentralized multi-source domain adaptation[J]. Frontiers of Information Technology & Electronic Engineering, 2022, 23(12): 1780-1794.

@article{title="Dual collaboration for decentralized multi-source domain adaptation",
author="Yikang WEI, Yahong HAN",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="23",
number="12",
pages="1780-1794",
year="2022",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.2200284"
}

%0 Journal Article
%T Dual collaboration for decentralized multi-source domain adaptation
%A Yikang WEI
%A Yahong HAN
%J Frontiers of Information Technology & Electronic Engineering
%V 23
%N 12
%P 1780-1794
%@ 2095-9184
%D 2022
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.2200284

TY - JOUR
T1 - Dual collaboration for decentralized multi-source domain adaptation
A1 - Yikang WEI
A1 - Yahong HAN
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 23
IS - 12
SP - 1780
EP - 1794
%@ 2095-9184
Y1 - 2022
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.2200284


Abstract: 
The goal of decentralized multi-source domain adaptation is to conduct unsupervised multi-source domain adaptation in a data decentralization scenario. The challenge of data decentralization is that the source domains and target domain lack cross-domain collaboration during training. On the unlabeled target domain, the target model needs to transfer supervision knowledge with the collaboration of source models, while the domain gap will lead to limited adaptation performance from source models. On the labeled source domain, the source model tends to overfit its domain data in the data decentralization scenario, which leads to the negative transfer problem. For these challenges, we propose dual collaboration for decentralized multi-source domain adaptation by training and aggregating the local source models and local target model in collaboration with each other. On the target domain, we train the local target model by distilling supervision knowledge and fully using the unlabeled target domain data to alleviate the domain shift problem with the collaboration of local source models. On the source domain, we regularize the local source models in collaboration with the local target model to overcome the negative transfer problem. This forms a dual collaboration between the decentralized source domains and target domain, which improves the domain adaptation performance under the data decentralization scenario. Extensive experiments indicate that our method outperforms the state-of-the-art methods by a large margin on standard multi-source domain adaptation datasets.

双向协同的去中心化多源域自适应

魏义康1,2,韩亚洪1,2
1天津大学智能与计算学部,中国天津市,300350
2天津大学天津市机器学习重点实验室,中国天津市,300350
摘要:去中心化多源域自适应是指在数据去中心化场景下执行无监督多源域自适应。数据去中心化的挑战是源域与目标域在训练中缺乏跨域协同。对于无标签的目标域,目标域模型需要在源域模型的协助下迁移监督知识,而域差距会导致源域模型的适应性能有限。对于有标签的源域,源域模型在数据去中心化场景下倾向于过拟合本地数据,从而导致负迁移问题。对于以上挑战,提出双向协同的去中心化多源域自适应方法,通过其它域模型的协助进行局部源域模型与局部目标域模型的协同训练与聚合。对于目标域,我们在源域模型的协助下蒸馏监督知识,同时完全利用无标签目标域的数据来缓解域偏移问题。对于源域,我们在目标域模型的协助下正则化源域模型来避免负迁移问题。以上过程在去中心化的源域和目标域之间形成一种双向协同,以便在数据去中心化场景下提升域自适应性能。在标准多源域自适应数据集上的实验表明,我们的方法以较大优势优于现有的多源域自适应方法。

关键词:多源域自适应;数据去中心化;域偏移;负迁移

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Ahmed SM, Raychaudhuri DS, Paul S, et al., 2021. Unsupervised multi-source domain adaptation without access to source data. Proc IEEE/CVF Conf on Computer Vision and Pattern Recognition, p.10103-10112.

[2]Cubuk ED, Zoph B, Shlens J, et al., 2020. Randaugment: practical automated data augmentation with a reduced search space. Proc IEEE/CVF Conf on Computer Vision and Pattern Recognition Workshops, p.702-703.

[3]Feng HZ, You ZY, Chen MH, et al., 2021. KD3A: unsupervised multi-source decentralized domain adaptation via knowledge distillation. Pro 38th Int Conf on Machine Learning, p.3274-3283.

[4]Ganin Y, Lempitsky V, 2015. Unsupervised domain adaptation by backpropagation. Pro 32nd Int Conf on Machine Learning, p.1180-1189.

[5]Gao Z, Guo LM, Ren TW, et al., 2022. Pairwise two-stream ConvNets for cross-domain action recognition with small data. IEEE Trans Neur Netw Learn Syst, 33(3):1147-1161.

[6]Han YH, Wu AM, Zhu LC, et al., 2021. Visual commonsense reasoning with directional visual connections. Front Inform Technol Electron Eng, 22(5):625-637.

[7]Kundu JN, Venkat N, Rahul MV, et al., 2020. Universal source-free domain adaptation. Proc IEEE/CVF Conf on Computer Vision and Pattern Recognition, p.4544-4553.

[8]Kundu JN, Kulkarni A, Singh A, et al., 2021. Generalize then adapt: source-free domain adaptive semantic segmentation. Proc IEEE/CVF Int Conf on Computer Vision, p.7046-7056.

[9]Li R, Jiao QF, Cao WM, et al., 2020. Model adaptation: unsupervised domain adaptation without source data. Proc IEEE/CVF Conf on Computer Vision and Pattern Recognition, p.9641-9650.

[10]Li RH, Jia X, He JZ, et al., 2021. T-SVDNet: exploring high-order prototypical correlations for multi-source domain adaptation. Proc IEEE/CVF Int Conf on Computer Vision, p.9991-10000.

[11]Li S, Song SJ, Wu C, 2018. Layer-wise domain correction for unsupervised domain adaptation. Front Inform Technol Electron Eng, 19(1):91-103.

[12]Liang J, Hu DP, Feng JS, 2020. Do we really need to access the source data? Source hypothesis transfer for unsupervised domain adaptation. Proc 37th Int Conf on Machine Learning, p.6028-6039.

[13]Liu YA, Zhang W, Wang J, 2021. Source-free domain adaptation for semantic segmentation. Proc IEEE/CVF Conf on Computer Vision and Pattern Recognition, p.1215-1224.

[14]Long MS, Cao Y, Wang JM, et al., 2015. Learning transferable features with deep adaptation networks. Proc 32nd Int Conf on Machine Learning, p.97-105.

[15]McMahan B, Moore E, Ramage D, et al., 2017. Communication-efficient learning of deep networks from decentralized data. Proc 20th Int Conf on Artificial Intelligence and Statistics, p.1273-1282.

[16]Miyato T, Maeda Si, Koyama M, et al., 2018. Virtual adversarial training: a regularization method for supervised and semi-supervised learning. IEEE Trans Patt Anal Mach Intell, 41(8):1979-1993.

[17]Nguyen VA, Nguyen T, Le T, et al., 2021. STEM: an approach to multi-source domain adaptation with guarantees. Proc IEEE/CVF Int Conf on Computer Vision, p.9352-9363.

[18]Peng XC, Bai QX, Xia XD, et al., 2019. Moment matching for multi-source domain adaptation. Proc IEEE/CVF Int Conf on Computer Vision, p.1406-1415.

[19]Peng XC, Huang ZJ, Zhu YZ, et al., 2020. Federated adversarial domain adaptation. Proc 8th Int Conf on Learning Representations, p.1-19.

[20]Pu SL, Zhao W, Chen WJ, et al., 2021. Unsupervised object detection with scene-adaptive concept learning. Front Inform Technol Electron Eng, 22(5):638-651.

[21]Qiu Z, Zhang YF, Lin HB, et al., 2021. Source-free domain adaptation via avatar prototype generation and adaptation. Proc 30th Int Joint Conf on Artificial Intelligence, p.2921-2927.

[22]Saito K, Kim D, Sclaroff S, et al., 2019. Semi-supervised domain adaptation via minimax entropy. Proc IEEE/CVF Int Conf on Computer Vision, p.8050-8058.

[23]van der Maaten L, Hinton G, 2008. Visualizing data using t-SNE. J Mach Learn Res, 9(86):2579-2605.

[24]Venkat N, Kundu JN, Singh DK, et al., 2020. Your classifier can secretly suffice multi-source domain adaptation. Proc 34th Int Conf on Neural Information Processing Systems, 33:4647-4659.

[25]Wang B, Li G, Wu C, et al., 2022. A framework for self-supervised federated domain adaptation. EURASIP J Wirel Commun Network, 2022(1):37.

[26]Wang H, Xu MH, Ni BB, et al., 2020. Learning to combine: knowledge aggregation for multi-source domain adaptation. Proc 16th European Conf on Computer Vision, p.727-744.

[27]Wu GL, Gong SG, 2021. Collaborative optimization and aggregation for decentralized domain generalization and adaptation. Proc IEEE/CVF Int Conf on Computer Vision, p.6484-6493.

[28]Xia HF, Zhao HD, Ding ZM, 2021. Adaptive adversarial network for source-free domain adaptation. Proc IEEE/CVF Int Conf on Computer Vision, p.9010-9019.

[29]Xu RJ, Chen ZL, Zuo WM, et al., 2018. Deep cocktail network: multi-source unsupervised domain adaptation with category shift. Proc IEEE Conf on Computer Vision and Pattern Recognition, p.3964-3973.

[30]Yang LY, Balaji Y, Lim SN, et al., 2020. Curriculum manager for source selection in multi-source domain adaptation. Proc 16th European Conf on Computer Vision, p.608-624.

[31]Yang Q, Liu Y, Cheng Y, et al., 2020. Federated Learning. Springer, Cham, Germany.

[32]Yang Y, Zhuang YT, Pan YH, 2021. Multiple knowledge representation for big data artificial intelligence: framework, applications, and case studies. Front Inform Technol Electron Eng, 22(12):1551-1558.

[33]Zhao H, Zhang SH, Wu GH, et al., 2018. Adversarial multiple source domain adaptation. Proc 32nd Int Conf on Neural Information Processing Systems, p.8568-8579.

[34]Zhao SC, Li B, Yue XY, et al., 2019. Multi-source domain adaptation for semantic segmentation. Proc 33rd Int Conf on Neural Information Processing Systems, p.655.

[35]Zhao SC, Wang GZ, Zhang SH, et al., 2020. Multi-source distilling domain adaptation. Proc AAAI on Conf Artificial Intelligence, 34(7):12975-12983.

[36]Zhao SC, Li B, Xu PF, et al., 2021. Madan: multi-source adversarial domain aggregation network for domain adaptation. Int J Comput Vis, 129(8):2399-2424.

[37]Zhao YB, Zhang H, Gao Z, et al., 2022. A temporal-aware relation and attention network for temporal action localization. IEEE Trans Image Process, 31:4746-4760.

[38]Zhou KY, Yang YX, Qiao Y, et al., 2021. Domain adaptive ensemble learning. IEEE Trans Image Process, 30:8008-8018.

[39]Zuo YK, Yao HT, Xu CS, 2021. Attention-based multi-source domain adaptation. IEEE Trans Image Process, 30:3793-3803.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2023 Journal of Zhejiang University-SCIENCE