Full Text:   <2149>

Summary:  <241>

CLC number: TP277

On-line Access: 2024-05-06

Received: 2022-11-24

Revision Accepted: 2024-05-06

Crosschecked: 2023-08-06

Cited: 0

Clicked: 986

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Longkai WANG

https://orcid.org/0000-0003-0865-0836

Yong LEI

https://orcid.org/0000-0003-0235-5203

-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering  2024 Vol.25 No.4 P.555-568

http://doi.org/10.1631/FITEE.2200592


Availability evaluation of controller area networks under the influence of intermittent connection faults


Author(s):  Longkai WANG, Leiming ZHANG, Yong LEI

Affiliation(s):  State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China; more

Corresponding email(s):   lkwang@zju.edu.cn, smezlm2010@126.com, ylei@zju.edu.cn

Key Words:  Controller area network, Intermittent connection fault, Arrival rate, Deterministic and stochastic Petri net, Availability evaluation


Longkai WANG, Leiming ZHANG, Yong LEI. Availability evaluation of controller area networks under the influence of intermittent connection faults[J]. Frontiers of Information Technology & Electronic Engineering, 2024, 25(4): 555-568.

@article{title="Availability evaluation of controller area networks under the influence of intermittent connection faults",
author="Longkai WANG, Leiming ZHANG, Yong LEI",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="25",
number="4",
pages="555-568",
year="2024",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.2200592"
}

%0 Journal Article
%T Availability evaluation of controller area networks under the influence of intermittent connection faults
%A Longkai WANG
%A Leiming ZHANG
%A Yong LEI
%J Frontiers of Information Technology & Electronic Engineering
%V 25
%N 4
%P 555-568
%@ 2095-9184
%D 2024
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.2200592

TY - JOUR
T1 - Availability evaluation of controller area networks under the influence of intermittent connection faults
A1 - Longkai WANG
A1 - Leiming ZHANG
A1 - Yong LEI
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 25
IS - 4
SP - 555
EP - 568
%@ 2095-9184
Y1 - 2024
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.2200592


Abstract: 
controller area networks (CANs), as one of the widely used fieldbuses in the industry, have been extended to the automation field with strict standards for safety and reliability. In practice, factors such as fatigue and insulation wear of the cables can cause intermittent connection (IC) faults to occur frequently in the CAN, which will affect the dynamic behavior and the safety of the system. Hence, quantitatively evaluating the performance of the CAN under the influence of IC faults is crucial to real-time health monitoring of the system. In this paper, a novel methodology is proposed for real-time quantitative evaluation of CAN availability when considering IC faults, with the system availability parameter being calculated based on the network state transition model. First, the causal relationship between IC fault and network error response is constructed, based on which the IC fault arrival rate is estimated. Second, the states of the network considering IC faults are analyzed, and the deterministic and stochastic Petri net (DSPN) model is applied to describe the transition relationship of the states. Then, the parameters of the DSPN model are determined and the availability of the system is calculated based on the probability distribution and physical meaning of markings in the DSPN model. A testbed is constructed and case studies are conducted to verify the proposed methodology under various experimental setups. Experimental results show that the estimation results obtained using the proposed method agree well with the actual values.

间歇性连接故障影响下的控制器局域网可用性评估

王珑凯1,张雷鸣2,雷勇1
1浙江大学流体动力与机电系统国家重点实验室,中国杭州市,310027
2中国电子科技集团公司第十四研究所,中国南京市,210039
摘要:控制器局域网(CAN)作为工业中广泛使用的现场总线之一,已经扩展到对安全性和可靠性有严格要求的自动化领域。在实际应用中,电缆的疲劳和绝缘磨损等因素会导致CAN总线中间歇性连接(IC)故障频繁发生,从而影响系统的动态行为和安全。因此,定量评估CAN在IC故障影响下的性能对系统的实时健康监测至关重要。本文提出一种考虑IC故障的CAN可用性实时定量评估方法,该方法基于网络状态转移模型计算系统可用性参数。首先,构建IC故障与网络错误响应之间的因果关系,在此基础上估计IC故障到达速率。其次,对考虑IC故障的网络状态进行分析,采用确定与随机Petri网(DSPN)模型描述状态间的转移关系。然后,根据DSPN模型中标识的概率分布和物理意义,确定DSPN模型的参数并计算系统的可用度。搭建了实验平台,并在多种实验条件下对所提方法进行实例验证。实验结果表明,所提方法的估计结果与实际值吻合良好。

关键词:控制器局域网;间歇性连接故障;到达速率;确定和随机Petri网;可用性评估

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Bosch R, 1991. CAN Specification Version 2.0. Technical Report. Robert Bousch GmbH, Postfach, Gerlingen, Germany.

[2]Chen JX, Luo F, Sun ZC, 2006. Reliability analysis of CAN nodes under electromagnetic interference. IEEE Int Conf on Vehicular Electronics and Safety, p.367-371.

[3]Choi H, Kulkarni VG, Trivedi KS, 1993. Transient analysis of deterministic and stochastic Petri nets. Proc 14th Int Conf on Application and Theory of Petri Nets, p.166-185.

[4]Choi H, Kulkarni VG, Trivedi KS, 1994. Markov regenerative stochastic Petri nets. Perform Eval, 20(1-3):337-357.

[5]Dos Santos Roque A, Jazdi N, De Freitas EP, et al., 2022. A fault modeling based runtime diagnostic mechanism for vehicular distributed control systems. IEEE Trans Intell Transp Syst, 23(7):7220-7232.

[6]Gaujal B, Navet N, 2005. Fault confinement mechanisms on CAN: analysis and improvements. IEEE Trans Veh Technol, 54(3):1103-1113.

[7]Gujarati A, Brandenburg BB, 2015. When is CAN the weakest link? A bound on failures-in-time in CAN-based real-time systems. IEEE Real-Time Systems Symp, p.249-260.

[8]Hansson HA, Nolte T, Norstrom C, et al., 2002. Integrating reliability and timing analysis of CAN-based systems. IEEE Trans Ind Electron, 49(6):1240-1250.

[9]Herpel T, Hielscher KS, Klehmet U, et al., 2009. Stochastic and deterministic performance evaluation of automotive CAN communication. Comput Netw, 53(8):1171-1185.

[10]Lei Y, Djurdjanovic D, Ni J, 2010. DeviceNet reliability assessment using physical and data link layer parameters. Qual Reliab Eng Int, 26(7):703-715.

[11]Mary GI, Alex ZC, Jenkins L, 2013. Reliability analysis of controller area network based systems—a review. Int J Commun Netw Syst Sci, 6(4):155-166.

[12]Murata T, 1989. Petri nets: properties, analysis and applications. Proc IEEE, 77(4):541-580.

[13]Navet N, Song YQ, 2001. Validation of in-vehicle real-time applications. Comput Ind, 46(2):107-122.

[14]Navet N, Song YQ, Simonot F, 2000. Worst-case deadline failure probability in real-time applications distributed over controller area network. J Syst Archit, 46(7):607-617.

[15]Pohren DH, dos Santos Roque A, Kranz TAI, et al., 2020. An analysis of the impact of transient faults on the performance of the CAN-FD protocol. IEEE Trans Ind Electron, 67(3):2440-2449.

[16]Sun YC, Yang F, Lei Y, 2015. Message response time distribution analysis for controller area network containing errors. Chinese Automation Congress, p.1052-1057.

[17]Syed WA, Khan S, Phillips P, et al., 2013. Intermittent fault finding strategies. Proc CIRP, 11:74-79.

[18]Wang ZY, Guo XS, Yu CQ, 2010. Research of fault-tolerant redundancy and fault diagnosis technology based on CAN. 2nd Int Conf on Advanced Computer Control, p.287-291.

[19]Zago GM, de Freitas EP, 2018. A quantitative performance study on CAN and CAN FD vehicular networks. IEEE Trans Ind Electron, 65(5):4413-4422.

[20]Zhang LM, Tang LH, Yang F, et al., 2015. CAN node reliability assessment using segmented discrete time Markov chains. IEEE Int Conf on Automation Science and Engineering, p.231-236.

[21]Zhang LM, Tang LH, Lei Y, 2017a. Controller area network node reliability assessment based on observable node information. Front Inform Technol Electron Eng, 18(5):615-626.

[22]Zhang LM, Yuan Y, Lei Y, 2017b. Data driven CAN node reliability assessment for manufacturing system. Chin J Mech Eng, 30(1):190-199.

[23]Zhang LM, Sun YC, Lei Y, 2019. Message delay time distribution analysis for controller area network under errors. Front Inform Technol Electron Eng, 20(6):760-772.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE