Full Text:   <434>

Suppl. Mater.: 

CLC number: TP391.4

On-line Access: 2024-03-25

Received: 2022-12-08

Revision Accepted: 2024-03-25

Crosschecked: 2023-03-25

Cited: 0

Clicked: 568

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Chengmeng LIU

https://orcid.org/0000-0003-0541-8329

Zhi LI

https://orcid.org/0000-0001-9813-4979

-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering  2024 Vol.25 No.3 P.384-397

http://doi.org/10.1631/FITEE.2200628


A robust tensor watermarking algorithm for diffusion-tensor images


Author(s):  Chengmeng LIU, Zhi LI, Guomei WANG, Long ZHENG

Affiliation(s):  State Key Laboratory of Public Big Data, College of Computer Science and Technology, Guizhou University, Guiyang 550025, China

Corresponding email(s):   62377400@qq.com, zhili@gzu.edu.cn, 306252084@qq.com, zhenglong178@163.com

Key Words:  Robust watermarking algorithm, Transformer, Image reconstruction, Diffusion tensor images, Soft attention, Hard attention, T1-weighted images


Chengmeng LIU, Zhi LI, Guomei WANG, Long ZHENG. A robust tensor watermarking algorithm for diffusion-tensor images[J]. Frontiers of Information Technology & Electronic Engineering, 2024, 25(3): 384-397.

@article{title="A robust tensor watermarking algorithm for diffusion-tensor images",
author="Chengmeng LIU, Zhi LI, Guomei WANG, Long ZHENG",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="25",
number="3",
pages="384-397",
year="2024",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.2200628"
}

%0 Journal Article
%T A robust tensor watermarking algorithm for diffusion-tensor images
%A Chengmeng LIU
%A Zhi LI
%A Guomei WANG
%A Long ZHENG
%J Frontiers of Information Technology & Electronic Engineering
%V 25
%N 3
%P 384-397
%@ 2095-9184
%D 2024
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.2200628

TY - JOUR
T1 - A robust tensor watermarking algorithm for diffusion-tensor images
A1 - Chengmeng LIU
A1 - Zhi LI
A1 - Guomei WANG
A1 - Long ZHENG
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 25
IS - 3
SP - 384
EP - 397
%@ 2095-9184
Y1 - 2024
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.2200628


Abstract: 
Watermarking algorithms that use convolution neural networks have exhibited good robustness in studies of deep learning networks. However, after embedding watermark signals by convolution, the feature fusion efficiency of convolution is relatively low; this can easily lead to distortion in the embedded image. When distortion occurs in medical images, especially in diffusion tensor images (DTIs), the clinical value of the DTI is lost. To address this issue, a robust watermarking algorithm for DTIs implemented by fusing convolution with a transformer is proposed to ensure the robustness of the watermark and the consistency of sampling distance, which enhances the quality of the reconstructed image of the watermarked DTIs after embedding the watermark signals. In the watermark-embedding network, T1-weighted (T1w) images are used as prior knowledge. The correlation between T1w images and the original DTI is proposed to calculate the most significant features from the T1w images by using the transformer mechanism. The maximum of the correlation is used as the most significant feature weight to improve the quality of the reconstructed DTI. In the watermark extraction network, the most significant watermark features from the watermarked DTI are adequately learned by the transformer to robustly extract the watermark signals from the watermark features. Experimental results show that the average peak signal-to-noise ratio of the watermarked DTI reaches 50.47 dB, the diffusion characteristics such as mean diffusivity and fractional anisotropy remain unchanged, and the main axis deflection angle αAC is close to 1. Our proposed algorithm can effectively protect the copyright of the DTI and barely affects the clinical diagnosis.

弥散张量图像的鲁棒水印算法

刘程萌,李智,王国美,郑龙
贵州大学计算机科学与技术学院公共大数据国家重点实验室,中国贵阳市,550025
摘要:在深度学习网络的研究中,使用卷积神经网络的水印算法表现出良好的鲁棒性。然而,通过卷积嵌入水印信号后,卷积的特征融合效率相对较低;这很容易导致嵌入图像的失真。当医学图像发生失真时,特别是在扩散张量图像(DTI)中,DTI的临床价值就会丧失。为解决这个问题,提出一种通过融合卷积与Transformer实现的DTI鲁棒性水印算法,以确保水印的鲁棒性和采样距离的一致性,从而提高嵌入水印信号后的DTI重建图像质量。在水印嵌入网络中,使用T1加权(T1w)图像作为先验知识。提出T1w图像和原始DTI之间的相关性,并利用Transformer从T1w图像中提取与原始DTI最相关的重要特征提升重建DTI图像质量。在水印提取网络中,Transformer充分学习水印DTI中最重要的水印特征,从而从水印特征中鲁棒提取水印信号。实验结果表明,水印DTI的平均峰值信噪比(PSNR)达到50.47 dB,扩散特征如平均扩散率和各向异性分数保持不变,主轴偏转角αAC接近1。所提算法可以有效保护DTI版权,几乎不影响临床诊断。

关键词:鲁棒水印算法;Transformer;图像重构;弥散张量图像;软注意力;硬注意力;T1加权图像

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Ahmadi M, Norouzi A, Karimi N, et al., 2020. ReDMark: framework for residual diffusion watermarking based on deep networks. Exp Syst Appl, 146:113157.

[2]Amini M, Ahmad MO, Swamy MNS, 2018. A robust multibit multiplicative watermark decoder using a vector-based hidden Markov model in wavelet domain. IEEE Trans Circ Syst Video Technol, 28(2):402-413.

[3]Anand D, Niranjan UC, 1998. Watermarking medical images with patient information. Proc 20th Annual Int Conf of the IEEE Engineering in Medicine and Biology Society, p.703-706.

[4]Anctil-Robitaille B, Desrosiers C, Lombaert H, 2021. Manifold-aware CycleGAN for high-resolution structural-to-DTI synthesis. Proc Int MICCAI Workshop on Computational Diffusion MRI, p.213-224.

[5]Cintra RJ, Cooklev TV, 2009. Robust image watermarking using non-regular wavelets. Signal Image Video Process, 3(3):241-250.

[6]Dosovitskiy A, Beyer L, Kolesnikov A, et al., 2020. An image is worth 16×16 words: Transformers for image recognition at scale. https://arxiv.org/abs/2010.11929

[7]Feng CM, Yan Y, Fu H, et al., 2021. Task transformer network for joint MRI reconstruction and super-resolution. 24th Int Conf on Medical Image Computing and Computer-Assisted Intervention, p.307-317.

[8]He KM, Zhang XY, Ren SQ, et al., 2016. Deep residual learning for image recognition. Proc IEEE Conf on Computer Vision and Pattern Recognition, p.770-778.

[9]Hu J, Shen L, Sun G, 2018. Squeeze-and-excitation networks. Proc IEEE/CVF Conf on Computer Vision and Pattern Recognition, p.7132-7141.

[10]Huan WN, Li S, Qian ZX, et al., 2022. Exploring stable coefficients on joint sub-bands for robust video watermarking in DT CWT domain. IEEE Trans Circ Syst Video Technol, 32(4):1955-1965.

[11]Huang G, Liu Z, van der Maaten L, et al., 2017. Densely connected convolutional networks. Proc IEEE Conf on Computer Vision and Pattern Recognition, p.2261-2269.

[12]Lai ZY, Qu XB, Liu YS, et al., 2016. Image reconstruction of compressed sensing MRI using graph-based redundant wavelet transform. Med Image Anal, 27:93-104.

[13]Le Bihan D, Mangin JF, Poupon C, et al., 2001. Diffusion tensor imaging: concepts and applications. J Magn Reson Imag, 13(4):534-546.

[14]Lee HK, Kim HJ, Kwon KR, et al., 2005. ROI medical image watermarking using DWT and bit-plane. Proc Asia-Pacific Conf on Communications, p.512-515.

[15]Li HY, Liang ZF, Zhang CY, et al., 2021. SuperDTI: ultrafast DTI and fiber tractography with deep learning. Magn Reson Med, 86(6):3334-3347.

[16]Liu XL, Lin CC, Yuan SM, 2018. Blind dual watermarking for color images’ authentication and copyright protection. IEEE Trans Circ Syst Video Technol, 28(5):1047-1055.

[17]Luo XY, Zhan RH, Chang HW, et al., 2020. Distortion agnostic deep watermarking. Proc IEEE/CVF Conf on Computer Vision and Pattern Recognition, p.13545-13554.

[18]Nakarmi U, Wang Y, Lyu J, et al., 2017. A kernel-based low-rank (KLR) model for low-dimensional manifold recovery in highly accelerated dynamic MRI. IEEE Trans Med Imag, 36(11):2297-2307.

[19]Ni ZC, Shi YQ, Ansari N, et al., 2006. Reversible data hiding. IEEE Trans Circ Syst Video Technol, 16(3):354-362.

[20]Ravishankar S, Bresler Y, 2011. MR image reconstruction from highly undersampled k-space data by dictionary learning. IEEE Trans Med Imag, 30(5):1028-1041.

[21]Shin PJ, Larson PEZ, Ohliger MA, et al., 2013. Calibrationless parallel imaging reconstruction based on structured low-rank matrix completion. Magn Reson Med, 72(4):959-970.

[22]Singh AK, Dave M, Mohan A, 2015. Hybrid technique for robust and imperceptible multiple watermarking using medical images. Multim Tools Appl, 75(14):8381-8401.

[23]Stejskal EO, Tanner JE, 1965. Spin diffusion measurements: spin echoes in the presence of a time-dependent field gradient. J Chem Phys, 42(1):288-292.

[24]Su QT, Sun YH, Zhang XT, et al., 2022. A watermarking scheme for dual-color images based on URV decomposition and image correction. Int J Intell Syst, 37(10):7548-7570.

[25]van Essen D, Ugurbil K, Auerbach E, et al., 2012. The Human Connectome Project: a data acquisition perspective. NeuroImage, 62(4):2222-2231.

[26]Vaswani A, Shazeer N, Parmar N, et al., 2017. Attention is all you need. Proc 31st Int Conf on Neural Information Processing Systems, p.6000-6010.

[27]Wang CP, Wang XY, Xia ZQ, et al., 2019. Ternary radial harmonic Fourier moments based robust stereo image zero-watermarking algorithm. Inform Sci, 470:109-120.

[28]Wang N, Li Z, Cheng XY, et al., 2018. Diffusion weighted image reversible visible watermarking algorithm based on support vector regression. Proc 14th IEEE Int Conf on Signal Processing, p.1144-1148.

[29]Wen BY, Aydore S, 2019. ROMark: a robust watermarking system using adversarial training. https://arxiv.org/abs/1910.01221

[30]Wen Q, Sun TF, Wang SX, 2003. Concept and application of zero-watermark. Acta Electon Sin, 31(2):214-216 (in Chinese).

[31]Wu HP, Xiao B, Codella N, et al., 2021. CvT: introducing convolutions to vision Transformers. Proc IEEE/CVF Int Conf on Computer Vision, p.22-31.

[32]Xia ZQ, Wang XY, Li XX, et al., 2019. Efficient copyright protection for three CT images based on quaternion polar harmonic Fourier moments. Signal Process, 164:368-379.

[33]Yang FZ, Yang H, Fu JL, et al., 2020. Learning texture transformer network for image super-resolution. Proc IEEE/CVF Conf on Computer Vision and Pattern Recognition, p.5790-5799.

[34]Zhan ZF, Cai JF, Guo D, et al., 2016. Fast multiclass dictionaries learning with geometrical directions in MRI reconstruction. IEEE Trans Biomed Eng, 63(9):1850-1861.

[35]Zhou B, Zhou SK, 2020. DuDoRNet: learning a dual-domain recurrent network for fast MRI reconstruction with deep T1 prior. Proc IEEE/CVF Conf on Computer Vision and Pattern Recognition, p.4272-4281.

[36]Zhu JR, Kaplan R, Johnson J, et al., 2018. HiDDeN: hiding data with deep networks. Proc 15th European Conf on Computer Vision, p.682-697.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE