Full Text:   <874>

Summary:  <230>

CLC number: 

On-line Access: 2024-06-04

Received: 2024-01-07

Revision Accepted: 2024-06-04

Crosschecked: 2024-02-29

Cited: 0

Clicked: 728

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Xin HE

https://orcid.org/0000-0001-8229-8143

Zetao CHEN

https://orcid.org/0000-0002-5596-5008

-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering  2024 Vol.25 No.5 P.755-762

http://doi.org/10.1631/FITEE.2400011


SEVAR: a stereo event camera dataset for virtual and augmented reality


Author(s):  Yuda DONG, Zetao CHEN, Xin HE, Lijun LI, Zichao SHU, Yinong CAO, Junchi FENG, Shijie LIU, Chunlai LI, Jianyu WANG

Affiliation(s):  Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; more

Corresponding email(s):   dongyuda21@mails.ucas.ac.cn, zetao-chen@ylab.ac.cn, xinhe@ucas.ac.cn

Key Words: 


Share this article to: More <<< Previous Article|

Yuda DONG, Zetao CHEN, Xin HE, Lijun LI, Zichao SHU, Yinong CAO, Junchi FENG, Shijie LIU, Chunlai LI, Jianyu WANG. SEVAR: a stereo event camera dataset for virtual and augmented reality[J]. Frontiers of Information Technology & Electronic Engineering, 2024, 25(5): 755-762.

@article{title="SEVAR: a stereo event camera dataset for virtual and augmented reality",
author="Yuda DONG, Zetao CHEN, Xin HE, Lijun LI, Zichao SHU, Yinong CAO, Junchi FENG, Shijie LIU, Chunlai LI, Jianyu WANG",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="25",
number="5",
pages="755-762",
year="2024",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.2400011"
}

%0 Journal Article
%T SEVAR: a stereo event camera dataset for virtual and augmented reality
%A Yuda DONG
%A Zetao CHEN
%A Xin HE
%A Lijun LI
%A Zichao SHU
%A Yinong CAO
%A Junchi FENG
%A Shijie LIU
%A Chunlai LI
%A Jianyu WANG
%J Frontiers of Information Technology & Electronic Engineering
%V 25
%N 5
%P 755-762
%@ 2095-9184
%D 2024
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.2400011

TY - JOUR
T1 - SEVAR: a stereo event camera dataset for virtual and augmented reality
A1 - Yuda DONG
A1 - Zetao CHEN
A1 - Xin HE
A1 - Lijun LI
A1 - Zichao SHU
A1 - Yinong CAO
A1 - Junchi FENG
A1 - Shijie LIU
A1 - Chunlai LI
A1 - Jianyu WANG
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 25
IS - 5
SP - 755
EP - 762
%@ 2095-9184
Y1 - 2024
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.2400011


Abstract: 
Event cameras, characterized by their low latency, large dynamic range, and extremely high temporal resolution, have recently received increasing attention. These features make them particularly well-suited for virtual/augmented reality (VR/AR) applications. To facilitate the development of three-dimensional (3D) perception and navigation algorithms in VR/AR applications using event cameras, we introduce the Stereo Event camera dataset for Virtual and Augmented Reality (SEVAR), which comprises a wide variety of head-mounted indoor sequences, including scenarios with rapid motion and a large dynamic range. We present the first comprehensive set of VR/AR datasets captured with an event-based stereo camera, a regular stereo camera at 30 Hz, and an inertial measurement unit at 1000 Hz. The camera placement, field of view (FoV), and resolution match those of the head-mounted device, such as Meta Quest Pro. All sensors are time-synchronized in the hardware. Ground truth poses captured by a motion capture system are also available for trajectory evaluation. The sequences include several common scenarios, and cover the specific challenges targeted by event cameras. The dataset can be found at https://github.com/sevar-dataset/sevar.

SEVAR:用于虚拟和增强现实场景的双目事件相机数据集

董宇达1,3,陈泽涛4,何欣?1,2,李立俊4,舒子超4,曹易农1,3
冯俊驰1,3,刘世界1,李春来1,2,王建宇1,2
1中国科学院大学杭州高等研究院,中国杭州市,310024
2中国科学院上海技术物理研究所,中国上海市,200083
3中国科学院大学,中国北京市,100049
4甬江实验室,中国宁波市,130021
摘要:近年来,事件相机以其低延迟、高动态范围和高时间分辨率等特点受到越来越多关注。这些特点使它特别适合应用于虚拟和增强现实(VR/AR)领域。为了促进事件相机在VR/AR应用中的三维感知和定位算法的发展,我们引入用于虚拟和增强现实场景的双目事件相机数据集(SEVAR)。该数据集以头戴式设备为主体,覆盖几种常见的室内场景序列,包括面向事件相机的快速运动和高动态范围的挑战性情景。我们发布了第一组VR/AR场景的感知和定位数据集,该数据集由双目事件体相机、30 Hz双目标准相机和1000 Hz惯性测量单元采集。相机的放置方式、视场和分辨率与商用头戴设备(如Meta Quest Pro)相似。所有传感器在硬件上进行时间同步。为更好地开展定位精度和轨迹的评估,提供了由动作捕捉系统捕捉的位姿真值。数据集见https://github.com/sevar-dataset/sevar。

关键词:同步定位与地图构建(SLAM)数据集;事件相机;虚拟和增强现实(VR/AR)

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Alzugaray I, Chli M, 2018. Asynchronous corner detection and tracking for event cameras in real time. IEEE Rob Autom Lett, 3(4):3177-3184.

[2]Barranco F, Fermuller C, Aloimonos Y, et al., 2016. A dataset for visual navigation with neuromorphic methods. Front Neurosci, 10:49.

[3]Calabrese E, Taverni G, Easthope CA, et al., 2019. DHP19: dynamic vision sensor 3D human pose dataset. IEEE/ CVF Conf on Computer Vision and Pattern Recognition Workshops, p.1695-1704.

[4]Campos C, Elvira R, Rodríguez JJG, et al., 2021. ORB- SLAM3: an accurate open-source library for visual, visual- inertial, and multimap SLAM. IEEE Trans Rob, 37(6):1874-1890.

[5]Delmerico J, Cieslewski T, Rebecq H, et al., 2019. Are we ready for autonomous drone racing?The UZH-FPV drone racing dataset. Int Conf on Robotics and Automation, p.6713-6719.

[6]Furgale P, Rehder J, Siegwart R, 2013. Unified temporal and spatial calibration for multi-sensor systems. IEEE/RSJ Int Conf on Intelligent Robots and Systems, p.1280-1286.

[7]Furrer F, Fehr M, Novkovic T, et al., 2018. Evaluation of combined time-offset estimation and hand-eye calibration on robotic datasets. In: Hutter M, Siegwart R (Eds.), Field and Service Robotics. Springer Proceedings in Advanced Robotics, Vol. 5. Springer, Cham, p.145-159.

[8]Gao L, Liang YX, Yang JQ, et al., 2022. VECtor: a versatile event-centric benchmark for multi-sensor SLAM. IEEE Rob Autom Lett, 7(3):8217-8224.

[9]Gehrig M, Aarents W, Gehrig D, et al., 2021. DSEC: a stereo event camera dataset for driving scenarios. IEEE Rob Autom Lett, 6(3):4947-4954.

[10]Geiger A, Lenz P, Stiller C, et al., 2013. Vision meets robotics: the KITTI dataset. Int J Rob Res, 32(11):1231-1237.

[11]Geneva P, Eckenhoff K, Lee W, et al., 2020. OpenVINS: a research platform for visual-inertial estimation. IEEE Int Conf on Robotics and Automation, p.4666-4672.

[12]Hu YH, Liu SC, Delbruck T, 2021. v2e: from video frames to realistic DVS events. IEEE/CVF Conf on Computer Vision and Pattern Recognition Workshops, p.1312-1321.

[13]Klenk S, Chui J, Demmel N, et al., 2021. TUM-VIE: the TUM stereo visual-inertial event dataset. IEEE/RSJ Int Conf on Intelligent Robots and Systems, p.8601-8608.

[14]Liu YZ, Fu YJ, Chen FD, et al., 2021. Simultaneous localization and mapping related datasets: a comprehensive survey. https://arxiv.org/abs/2102.04036

[15]Olson E, 2011. AprilTag: a robust and flexible visual fiducial system. IEEE Int Conf on Robotics and Automation, p.3400-3407.

[16]Sturm J, Engelhard N, Endres F, et al., 2012. A benchmark for the evaluation of RGB-D SLAM systems. IEEE/RSJ Int Conf on Intelligent Robots and Systems, p.573-580.

[17]Weikersdorfer D, Adrian DB, Cremers D, et al., 2014. Event-based 3D SLAM with a depth-augmented dynamic vision sensor. IEEE Int Conf on Robotics and Automation, p.359-364.

[18]Zhu AZ, Thakur D, Ozaslan T, et al., 2018. The multivehicle stereo event camera dataset: an event camera dataset for 3D perception. IEEE Rob Autom Lett, 3(3):2032-2039.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE