Full Text:   <1797>

CLC number: TU311.3, TU973

On-line Access: 

Received: 1999-12-12

Revision Accepted: 2000-04-15

Crosschecked: 0000-00-00

Cited: 0

Clicked: 3988

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
1. Reference List
Open peer comments

Journal of Zhejiang University SCIENCE A 2000 Vol.1 No.4 P.408-413

http://doi.org/10.1631/jzus.2000.0408


THE GA-ANN METHOD FOR DETERMINING CALCULATION PARAMETERS FOR DEEP EXCAVATION


Author(s):  XU Ri-qing

Affiliation(s):  Department of Civil Engineering, Zhejiang University, Hangzhou 310027, China

Corresponding email(s): 

Key Words:  excavation, diaphragm wall, genetic algorithm, artificial neural networks


Share this article to: More

XU Ri-qing. THE GA-ANN METHOD FOR DETERMINING CALCULATION PARAMETERS FOR DEEP EXCAVATION[J]. Journal of Zhejiang University Science A, 2000, 1(4): 408-413.

@article{title="THE GA-ANN METHOD FOR DETERMINING CALCULATION PARAMETERS FOR DEEP EXCAVATION",
author="XU Ri-qing",
journal="Journal of Zhejiang University Science A",
volume="1",
number="4",
pages="408-413",
year="2000",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.2000.0408"
}

%0 Journal Article
%T THE GA-ANN METHOD FOR DETERMINING CALCULATION PARAMETERS FOR DEEP EXCAVATION
%A XU Ri-qing
%J Journal of Zhejiang University SCIENCE A
%V 1
%N 4
%P 408-413
%@ 1869-1951
%D 2000
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.2000.0408

TY - JOUR
T1 - THE GA-ANN METHOD FOR DETERMINING CALCULATION PARAMETERS FOR DEEP EXCAVATION
A1 - XU Ri-qing
J0 - Journal of Zhejiang University Science A
VL - 1
IS - 4
SP - 408
EP - 413
%@ 1869-1951
Y1 - 2000
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.2000.0408


Abstract: 
This paper presents a new method (GA-ANN) developed by combining genetic algorithm (GA) and artificial neural networks (ANN) for determining parameters of soils and retaining walls of deep excavation. This method has the advantages of nonlinear projection of neural networks, networks reasoning, prediction and good overall characteristics. It was first used for back analysis of the problem of mechanics parameters for excavation. Case studies showed that the GA-ANN method is effective and practical for back analysis of determining parameters.

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Dong Chong 1995. Multi-layer front network research advance and some problems. Advanced Mechanics, 25(2):186 - 196. (in Chinese).

[2]Holland, J. H., 1975. Adaptation in Natural and Artificial System. Ann Arbor: Univ. of Michigan Press. p.125-175.

[3]Goldberg, D.E., 1989. Genetic Algorithms in Search, Optimization and Machine Leaning, Addison Wesley, New York, p.135-175.

[4]Shi, Hongbao, 1992. Neural network and its application. Xi'an Jiaotong University Press, p.5-8.(in Chinese).

[5]Xiao, Zhuanwen, 1997. Study on 3-D Numerical Simulation and Optimization of Excavation and Filling in Rock Mass, A Dissertation of Northeast University, p.89-103.(in Chinese).

[6]Xu, Riqing, 1996. Methods for back analysis of characteristics of soil and/or rock masses under excavation. Tongji University Post-docotoral Research Report, p.7-22. (in Chinese).

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2022 Journal of Zhejiang University-SCIENCE