CLC number: TQ152
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 0000-00-00
Cited: 5
Clicked: 6486
XIE Jian, ZHAO Xin-bing, MI Jian-li, CAO Gao-shao, TU Jiang-ping. Solvothermal synthesis of nanosized CoSb3 skutterudite[J]. Journal of Zhejiang University Science A, 2004, 5(12): 1504-1508.
@article{title="Solvothermal synthesis of nanosized CoSb3 skutterudite",
author="XIE Jian, ZHAO Xin-bing, MI Jian-li, CAO Gao-shao, TU Jiang-ping",
journal="Journal of Zhejiang University Science A",
volume="5",
number="12",
pages="1504-1508",
year="2004",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.2004.1504"
}
%0 Journal Article
%T Solvothermal synthesis of nanosized CoSb3 skutterudite
%A XIE Jian
%A ZHAO Xin-bing
%A MI Jian-li
%A CAO Gao-shao
%A TU Jiang-ping
%J Journal of Zhejiang University SCIENCE A
%V 5
%N 12
%P 1504-1508
%@ 1869-1951
%D 2004
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.2004.1504
TY - JOUR
T1 - Solvothermal synthesis of nanosized CoSb3 skutterudite
A1 - XIE Jian
A1 - ZHAO Xin-bing
A1 - MI Jian-li
A1 - CAO Gao-shao
A1 - TU Jiang-ping
J0 - Journal of Zhejiang University Science A
VL - 5
IS - 12
SP - 1504
EP - 1508
%@ 1869-1951
Y1 - 2004
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.2004.1504
Abstract: Nanostructures enhance phonon scattering and improve the figure of merit of thermoelectric materials. Nanosized CoSb3 skutterudite was synthesized by solvothermal methods using CoCl2 and SbCl3 as the precursors. A “two-step” model was suggested for the formation of CoSb3 based on the X-ray diffraction analysis. The first step is the formation of cobalt diantimonide in the earlier stage during the synthesis process. Diantimonide was then combined with antimony atoms to form the skutterudite structured triantimonide, CoSb3, in the later stage of the synthesis process as the second step. The synthesized CoSb3 powders consist of irregular particles with sizes of about 20 nm and sheets of about 80 nm.
[1] Caillat, T., Kulleck, J., Borshchevsky, A., Fleurial, J.P., 1996. Preparation and thermoelectric properties of the skutterudite-related phase Ru0.5Pd0.5Sb3. J. Appl. Phys., 79:8419-8426.
[2] DeMattei, R.C., Watcharapasorn, A., Feigelson, R.S., 2001. Conditions for the electrochemical synthesis of the CoPn (3) (Pn = P, As, Sb) skutterudites. J. Electrochem. Soc., 148:D109-D111.
[3] Deng, Y., Zhou, X.S., Wei, G.D., Liu, J., Nan, C.W., Zhao, S.J., 2002. Solvothermal preparation and characterization of nanocrystalline Bi2Te3 powder with different morphology. J. Phys. Chem. Solids, 63:2119-2121.
[4] DiSalvo, F.J., 1999. Thermoelectric cooling and power generation. Science, 285:703-706.
[5] Dyck, J.S., Chen, W.D., Uher, C., Chen, L., Tang, X.F., Hirai, T., 2002. Thermoelectric properties of the n-type filled skutterudite Ba0.3Co4Sb12 doped with Ni. J. Appl. Phys., 91:3698-3705.
[6] Keppens, V., Mandrus, D., Sales, B.C., Chakoumakos, B.C., Dai, P., Coldea, R., Maple, M.B., Gajewski, D.A., Freeman, E.J., Bennington, S., 1998. Localized vibrational modes in metallic solids. Nature, 395:876-878.
[7] Kihou, K., Shirotani, I., Shimaya, Y., Sekine, C., Yagi, T., 2004. High-pressure synthesis, electrical and magnetic properties of new filled skutterudites LnOs4P12 (Ln=Eu, Gd, Tb, Dy, Ho, Y). Mater. Res. Bull., 39:317-325.
[8] Leithe-Jasper, A., Kaczorowski, D., Rogl, P., Bogner, J., Reissner, M., Steiner, W., Wiesinger, G., Godart, C., 1999. Synthesis, crystal-structure determination and physical properties of YbFe4Sb12. Solid State Comm., 109:395-400.
[9] Liu, H., Wang, J.Y., Hu, X.B., Li, L.X., Gu, F., Zhao, S.R., Gu, M.Y., Boughton, R.I., Jiang, M.H., 2002. Preparation of filled skutterudite nanowire by a hydrothermal method. J. Alloys Comp., 334:313-316.
[10] Nolas, G.S., Lyon, H.B., Cohn, J.L., Tritt, T.M., Slack, G.A., 1997. Expanding the Investigation of the Thermoelectric Properties of Rare-earth-filled Skutterudites. Proc. 16th Int. Conf. Thermoelectrics, IEEE, Piscataway, NJ 08855, USA, p.321-325.
[11] Puyet, M., Lenoir, B., Dauscher, A., Dehmas, M., Stiewe, C., Müller, E., 2004. High temperature transport properties of partially filled CaxCo4Sb12 skutterudites. J. Appl. Phys., 95:4852-4855.
[12] Sales, B.C., Mandrus, D., Williams, R.K., 1996. Filled skutterudite antimonides: a new class of thermoelectric materials. Science, 272:1325-1328.
[13] Sales, B.C., Mandrus, D., Chakoumakos, B.C., Keppens, V., Thompson, J.R., 1997. Filled skutterudite antimonides: Electron crystals and phonon glasses. Phys. Rev. B, 56:15081-15089.
[14] Sharp, J.W., Jones, E.C., Williams, R.K., Martin, P.M., Sales, B.C., 1995. Thermoelectric properties of CoSb3 and related alloys. J. Appl. Phys., 78:1013-1018.
[15] Slack, G.A., Tsoukala, V.G., 1994. Some properties of semiconducting IrSb3. J. Appl. Phys., 76:1665-1671.
[16] Tang, X.F., Zhang, L.M., Yuan, R.Z., Chen, L.D., Goto, T., Hirai, T., Dyck, J.S., Chen, W., Uher, C., 2001. High-temperature thermoelectric properties of n-type BayNixCo4-xSb12. J. Mater. Res., 16:3343-3346.
[17] Tritt, T.M., 1999. Thermoelectric materialsHoley and unholey semiconductors. Science, 283:804-805.
[18] Wang, M., Zhang, Y., Muhammed, M., 1999. Synthesis and Characterization of nano-engineered thermoelectric skutterudite via solution chemistry route. Nanostr. Mater., 12:237-240.
[19] Yang, L., Wu, J.S., Zhang, L.T., 2004. Synthesis of filled skutterudite compound La0.75Fe3CoSb12 by spark plasma sintering and effect of porosity on thermoelectric properties. J. Alloys Comp., 364:83-88.
[19] Yu, S.H., Yang, J., Wu, Y.S., Han, Z.H., Lu, J., Xie, Y., Qian, Y.T., 1998. A new low temperature one-step route to metal chalcogenide semiconductors: PbE, Bi2E3 (E=S, Se, Te). J. Mater. Chem., 8:1949-1951.
Open peer comments: Debate/Discuss/Question/Opinion
<1>
JP@R and D<jayaprakash_khanderi@yahoo.com>
2010-09-07 13:33:31
good