CLC number: O657.7; TQ460.35
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 0000-00-00
Cited: 1
Clicked: 6928
LU Jian-gang. Mathematical modeling of salt-gradient ion-exchange simulated moving bed chromatography for protein separations[J]. Journal of Zhejiang University Science A, 2004, 5(12): 1613-1620.
@article{title="Mathematical modeling of salt-gradient ion-exchange simulated moving bed chromatography for protein separations",
author="LU Jian-gang",
journal="Journal of Zhejiang University Science A",
volume="5",
number="12",
pages="1613-1620",
year="2004",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.2004.1613"
}
%0 Journal Article
%T Mathematical modeling of salt-gradient ion-exchange simulated moving bed chromatography for protein separations
%A LU Jian-gang
%J Journal of Zhejiang University SCIENCE A
%V 5
%N 12
%P 1613-1620
%@ 1869-1951
%D 2004
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.2004.1613
TY - JOUR
T1 - Mathematical modeling of salt-gradient ion-exchange simulated moving bed chromatography for protein separations
A1 - LU Jian-gang
J0 - Journal of Zhejiang University Science A
VL - 5
IS - 12
SP - 1613
EP - 1620
%@ 1869-1951
Y1 - 2004
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.2004.1613
Abstract: The salt-gradient operation mode used in ion-exchange simulated moving bed chromatography (SMBC) can improve the efficiency of protein separations. A detailed model that takes into account any kind of adsorption/ion-exchange equilibrium, salt gradient, size exclusion, mass transfer resistance, and port periodic switching mechanism, was developed to simulate the complex dynamics. The model predictions were verified by the experimental data on upward and downward gradients for protein separations reported in the literature. All design and operating parameters (number, configuration, length and diameter of columns, particle size, switching period, flow rates of feed, raffinate, desorbent and extract, protein concentrations in feed, different salt concentrations in desorbent and feed) can be chosen correctly by numerical simulation. This model can facilitate the design, operation, optimization, control and scale-up of salt-gradient ion-exchange SMBC for protein separations.
[1] Abel, S., Mazzotti, M., Morbidelli, M., 2004. Solvent gradient operation of simulated moving beds 2. Langmuir isotherms. J. Chromatography A, 1026:47-55.
[2] Finlayson, B.A., 1980. Non-linear Analysis in Chemical Engineering. McGraw-Hill, New York.
[3] Gao, Y.G., Guan, Y.X., Yao, S.J., Cho, M.G., 2003. Lysozyme refolding at high concentration by dilution and size-exclusion chromatography. J. Zhejiang University SCIENCE, 4(2):136-141.
[4] Gu, T., 1995. Mathematical Modeling and Scale-up of Liquid Chromatography. Springer, Berlin.
[5] Gu, T., Tsai, G.J., Tsao, G.T., 1990. New approach to a general nonlinear multicomponent chromatography model. AIChE J., 36:784-788.
[6] Helfferich, F.G., 1983. Ion-exchange Kinetics(Evolution of A Theory. In: Liberti, L., Helfferich, F.G. (Eds.), Mass Transfer and Kinetics of Ion-exchange (NATO ASI Series E: Applied Science, No. 71). Martinus Nijhoff, The Hague, p.162.
[7] Houwing, J., Billiet, H.A.H., van der Wielen, L.A.M., 2002a. Optimization of azeotropic protein separations in gradient and isocratic ion-exchange simulated moving bed chromatography. J. Chromatography A, 944:189-201.
[8] Houwing, J., van Hateren, S.H., Billiet, H.A.H., van der Wielen, L.A.M., 2002b. Effect of salt gradients on the separation of dilute mixtures of proteins by ion-exchange in simulated moving beds. J. Chromatography A, 952:85-98.
[9] Houwing, J., Jensen, T.B., van Hateren, S.H., Billiet, H.A.H., van der Wielen, L.A.M., 2003a. Positioning of salt gradients in ion-exchange SMB. AIChE J., 49:665-674.
[10] Houwing, J., Billiet, H.A.H., van der Wielen, L.A.M., 2003b. Mass-transfer effects during separation of proteins in SMB by size exclusion. AIChE J., 49:1158-1167.
[11] Hritzko, B.J., Xie, Y., Wooley, R.J., Wang, N.H.L., 2002. Standing-wave design of tandem SMB for linear multicomponent systems. AIChE J., 48:2769-2787.
[12] Kaczmarski, K., Mazzotti, M., Storti, G., Morbidelli, M., 1997. Modeling fixed-bed adsorption columns through orthogonal collocations on moving finite elements. Comput. Chem. Eng., 21:641-660.
[13] Lu, J.G., 1995. Preparative Ion-Exchange Chromatography of Amino Acids. Ph. D. Thesis, Chem. Eng. Dept., Zhejiang Univ., Hangzhou (in Chinese).
[14] Lu, J.G., 2003. A non-linear non-ideal model of simulated moving bed chromatography for chiral separations. Chinese J. Chem. Eng., 11:234-239.
[15] Lu, J.G., Wu, P.D., 1997. Dynamics of preparative ion-exchange chromatography of amino acids. J. Chem. Eng. Chinese Univ., 11:163-165 (in Chinese).
[16] Migliorini, C., Mazzotti, M., Zenoni, G., Morbidelli, M., 2002. Shortcut experimental method for designing chiral SMB separations. AIChE J., 48:69-77.
[17] Minceva, M., Pais, L.S., Rodrigues, A.E., 2003. Cyclic steady state of simulated moving bed processes for enantiomers separation. Chem. Eng. Proc., 42:93-104.
[18] Pais, L.S., Rodrigues, A.E., 2003. Design of simulated moving bed and Varicol processes for preparative separations with a low number of columns. J. Chromatography A, 1006:33-44.
[19] Silva, E.A.B., Souza, A.A.U., Souza, S.M.A.G.U., 2002. The use of simulated moving bed in chromatographic separations: Study of the SMB configuration. Sep. Sci. Technol., 37:1489-1504.
[20] Yamamoto, S., Nakanishi, K., Matsuno, R., 1988. Ion-Exchange Chromatography of Proteins. Marcel-Dekker, New York and Basel.
[21] Yu, H.W., Ching, C.B., 2002. Optimization of a simulated moving bed based on an approximated Langmuir model. AIChE J., 48:2240-2246.
[22] Yu, Q., Wang, N.H.L., 1989. Computer simulations of multicomponent ion exchange and adsorption in fixed beds(Gradient-directed moving finite element method. Comput. Chem. Eng., 13:915-926.
[23] Zhang, Z.Y., Hidajat, K., Ray, A.K., Morbidelli, M., 2002. Multiobjective optimization of SMB and varicol process for chiral separation. AIChE J., 48:2800-2816.
Open peer comments: Debate/Discuss/Question/Opinion
<1>