CLC number: O221.2; O224
On-line Access:
Received: 2004-05-05
Revision Accepted: 2004-10-14
Crosschecked: 0000-00-00
Cited: 0
Clicked: 6122
SHANG You-lin, HAN Bo-shun. One-parameter quasi-filled function algorithm for nonlinear integer programming[J]. Journal of Zhejiang University Science A, 2005, 6(4): 305-310.
@article{title="One-parameter quasi-filled function algorithm for nonlinear integer programming",
author="SHANG You-lin, HAN Bo-shun",
journal="Journal of Zhejiang University Science A",
volume="6",
number="4",
pages="305-310",
year="2005",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.2005.A0305"
}
%0 Journal Article
%T One-parameter quasi-filled function algorithm for nonlinear integer programming
%A SHANG You-lin
%A HAN Bo-shun
%J Journal of Zhejiang University SCIENCE A
%V 6
%N 4
%P 305-310
%@ 1673-565X
%D 2005
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.2005.A0305
TY - JOUR
T1 - One-parameter quasi-filled function algorithm for nonlinear integer programming
A1 - SHANG You-lin
A1 - HAN Bo-shun
J0 - Journal of Zhejiang University Science A
VL - 6
IS - 4
SP - 305
EP - 310
%@ 1673-565X
Y1 - 2005
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.2005.A0305
Abstract: A definition of the quasi-filled function for nonlinear integer programming problem is given in this paper. A quasi-filled function satisfying our definition is presented. This function contains only one parameter. The properties of the proposed quasi-filled function and the method using this quasi-filled function to solve nonlinear integer programming problem are also discussed in this paper. Numerical results indicated the efficiency and reliability of the proposed quasi-filled function algorithm.
[1] Ge, R.P., 1990. A filled function method for finding a global minimizer of a function of several variables. Mathematical Programming, 46:191-204.
[2] Ge, R.P., Qin, Y.F., 1990. The global convexized filled functions for globally optimization. Applied Mathematics and Computations, 54(2):131-158.
[3] Lucid, S., Piccialli, V., 2002. New classes of globally convexized filled functions for global optimization. Journal of Global Optimization, 24:219-236.
[4] Zhu, W.X., 2000. A filled function method for nonlinear integer programming. ACTA of Mathematicae Applicatae Sinica, 23(4):481-487 (in Chinese).
[5] Zhu, W.X., 2003. On the Globally Convexized Filled Function Method for Box Constrained Continuous Global Optimization, It Appeared in Optimization. http://www.optimization-online.org/DB-FILE/2004/03/846.pdf.
[6] Zhang, L.S., Gao, F., Zhu, W.X., 1999. Nonlinear integer programming and global optimization. Journal of Computational Mathematics, 7(2):179-190.
Open peer comments: Debate/Discuss/Question/Opinion
<1>