Full Text:   <4953>

Summary:  <2159>

CLC number: TN713+.7

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 2014-07-16

Cited: 4

Clicked: 8706

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
1. Reference List
Open peer comments

Journal of Zhejiang University SCIENCE C 2014 Vol.15 No.8 P.687-696

http://doi.org/10.1631/jzus.C1300350


Volterra filter modeling of a nonlinear discrete-time system based on a ranked differential evolution algorithm


Author(s):  De-xuan Zou, Li-qun Gao, Steven Li

Affiliation(s):  School of Electrical Engineering and Automation, Jiangsu Normal University, Xuzhou 221116, China; more

Corresponding email(s):   zoudexuan@163.com

Key Words:  Ranked differential evolution, Identification problem, Nonlinear discrete-time systems, Volterra filter model, Premature convergence


Share this article to: More <<< Previous Article|

De-xuan Zou, Li-qun Gao, Steven Li. Volterra filter modeling of a nonlinear discrete-time system based on a ranked differential evolution algorithm[J]. Journal of Zhejiang University Science C, 2014, 15(8): 687-696.

@article{title="Volterra filter modeling of a nonlinear discrete-time system based on a ranked differential evolution algorithm",
author="De-xuan Zou, Li-qun Gao, Steven Li",
journal="Journal of Zhejiang University Science C",
volume="15",
number="8",
pages="687-696",
year="2014",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.C1300350"
}

%0 Journal Article
%T Volterra filter modeling of a nonlinear discrete-time system based on a ranked differential evolution algorithm
%A De-xuan Zou
%A Li-qun Gao
%A Steven Li
%J Journal of Zhejiang University SCIENCE C
%V 15
%N 8
%P 687-696
%@ 1869-1951
%D 2014
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.C1300350

TY - JOUR
T1 - Volterra filter modeling of a nonlinear discrete-time system based on a ranked differential evolution algorithm
A1 - De-xuan Zou
A1 - Li-qun Gao
A1 - Steven Li
J0 - Journal of Zhejiang University Science C
VL - 15
IS - 8
SP - 687
EP - 696
%@ 1869-1951
Y1 - 2014
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.C1300350


Abstract: 
This paper presents a ranked differential evolution (RDE) algorithm for solving the identification problem of nonlinear discrete-time systems based on a volterra filter model. In the improved method, a scale factor, generated by combining a sine function and randomness, effectively keeps a balance between the global search and the local search. Also, the mutation operation is modified after ranking all candidate solutions of the population to help avoid the occurrence of premature convergence. Finally, two examples including a highly nonlinear discrete-time rational system and a real heat exchanger are used to evaluate the performance of the RDE algorithm and five other approaches. Numerical experiments and comparisons demonstrate that the RDE algorithm performs better than the other approaches in most cases.

基于排序差分进化算法优化非线性离散时间系统的Volterra滤波器模型

研究目的:使用Volterra滤波器模型识别非线性离散时间系统,以合理选择Volterra滤波器模型的参数,获得理想的识别效果。
研究方法:提出排序差分进化算法,结合正弦函数和随机数产生尺度因子,有效平衡全局和局部搜索能力;在完成所有候选解排序后,修正了变异操作,有助于避免算法早熟。使用二阶Volterra模型研究非线性离散时间系统(图3–8)。
重要结论:数值实验和比较说明排序差分进化算法具有较强优化性能,且在大多数情况下优于其他方法。结合排序差分进化算法和二阶Volterra模型,可以获得较好识别效果。
排序差分进化;识别问题;非线性离散时间系统;Volterra滤波器模型;早熟

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Babu, B.V., Angira, R., 2006. Modified differential evolution (MDE) for optimization of non-linear chemical processes. Comput. Chem. Eng., 30(6-7):989-1002.

[2]Brest, J., Greiner, S., Boskovic, B., et al., 2006. Self-adapting control parameters in differential evolution: a comparative study on numerical benchmark problems. IEEE Trans. Evol. Comput., 10(6):646-657.

[3]Chang, W.D., 2012. Volterra filter modeling of nonlinear discrete-time system using improved particle swarm optimization. Dig. Signal Process., 22(6):1056-1062.

[4]Cheng, C.H., Powers, E.J., 2001. Optimal Volterra kernel estimation algorithms for a nonlinear communication system for PSK and QAM inputs. IEEE Trans. Signal Process., 49(1):147-163.

[5]Contan, C., Kirei, B.S., Topa, M.D., 2013. Modified NLMF adaptation of Volterra filters used for nonlinear acoustic echo cancellation. Signal Process., 93(5):1152-1161.

[6]Derrac, J., García, S., Molina, D., et al., 2011. A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm Evol. Comput., 1(1):3-18.

[7]Ji, W., Gan, W.S., 2012. Identification of a parametric loudspeaker system using an adaptive Volterra filter. Appl. Acoust., 73(12):1251-1262.

[8]Kennedy, J., Eberhart, R., 1995. Particle swarm optimization. Proc. IEEE Int. Conf. on Neural Networks, p.1942-1948.

[9]Krall, C., Witrisal, K., Leus, G., et al., 2008. Minimum mean-square error equalization for second-order Volterra systems. IEEE Trans. Signal Process., 56(10):4729-4737.

[10]Kuruoğlu, E.E., 2002. Nonlinear least lp-norm filters for nonlinear autoregressive α-stable processes. Dig. Signal Process., 12(1):119-142.

[11]Li, X., Yin, M., 2012. Optimal synthesis of linear antenna array with composite differential evolution algorithm. Sci. Iran., 19(6):1780-1787.

[12]Mleczko, M., Postema, M., Schmitz, G., 2009. Discussion of the application of finite Volterra series for the modeling of the oscillation behavior of ultrasound contrast agents. Appl. Acoust., 70(10):1363-1369.

[13]Nam, S.W., Powers, E.J., 2003. Volterra series representation of time-frequency distributions. IEEE Trans. Signal Process., 51(6):1532-1537.

[14]Shi, Y.H., Eberhart, R.C., 1999. Empirical study of particle swarm optimization. Proc. Congress on Evolutionary Computation, p.1945-1950.

[15]Storn, R., Price, K., 1995. Differential Evolution—a Simple and Efficient Adaptive Scheme for Global Optimization over Continuous Spaces. International Computer Science Institute, Berkeley, USA.

[16]Sumar, R.R., Coelho, A.A.R., Coelho, L.D.S., 2010. Computational intelligence approach to PID controller design using the universal model. Inform. Sci., 180(20):3980-3991.

[17]Tang, H., Liao, Y.H., Cao, J.Y., et al., 2010. Fault diagnosis approach based on Volterra models. Mech. Syst. Signal Process., 24(4):1099-1113.

[18]Wilcoxon, F., 1945. Individual comparisons by ranking methods. Biometr. Bull., 1(6):80-83.

[19]Zhang, J.S., Zhao, H.Q., 2010. A novel adaptive bilinear filter based on pipelined architecture. Dig. Signal Process., 20(1):23-38.

[20]Zou, D.X., Liu, H.K., Gao, L.Q., et al., 2011. An improved differential evolution algorithm for the task assignment problem. Eng. Appl. Artif. Intell., 24(4):616-624.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE