Full Text:   <2791>

CLC number: O177

On-line Access: 

Received: 2005-01-16

Revision Accepted: 2005-04-21

Crosschecked: 0000-00-00

Cited: 0

Clicked: 5920

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
1. Reference List
Open peer comments

Journal of Zhejiang University SCIENCE A 2005 Vol.6 No.10 P.1055-1057


Hollow dimension of modules

Author(s):  ORHAN Nil, KESKİ,N TÜ,TÜ,NCÜ, Derya

Affiliation(s):  Department of Mathematics, University of Hacettepe, Beytepe 06532, Ankara, Turkey

Corresponding email(s):   nilorhan@hacettepe.edu.tr, keskin@hacettepe.edu.tr

Key Words:  Hollow dimension, Supplement submodule

ORHAN Nil, KESKİN TÜTÜNCÜ Derya. Hollow dimension of modules[J]. Journal of Zhejiang University Science A, 2005, 6(10): 1055-1057.

@article{title="Hollow dimension of modules",
author="ORHAN Nil, KESKİN TÜTÜNCÜ Derya",
journal="Journal of Zhejiang University Science A",
publisher="Zhejiang University Press & Springer",

%0 Journal Article
%T Hollow dimension of modules
%A Derya
%J Journal of Zhejiang University SCIENCE A
%V 6
%N 10
%P 1055-1057
%@ 1673-565X
%D 2005
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.2005.A1055

T1 - Hollow dimension of modules
A1 - ORHAN Nil
A1 - N TÜ
A1 - TÜ
A1 - NCÜ
A1 - Derya
J0 - Journal of Zhejiang University Science A
VL - 6
IS - 10
SP - 1055
EP - 1057
%@ 1673-565X
Y1 - 2005
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.2005.A1055

In this paper, we are interested in the following general question: Given a module M which has finite hollow dimension and which has a finite collection of submodules Ki (1≤in) such that M=K1+...+Kn, can we find an expression for the hollow dimension of M in terms of hollow dimensions of modules built up in some way from K1,...,Kn We prove the following theorem: Let M be an amply supplemented module having finite hollow dimension and let Ki (1≤in) be a finite collection of submodules of M such that M=K1+...+Kn. Then the hollow dimension h(M) of M is the sum of the hollow dimensions of Ki (1≤in) if and only if Ki is a supplement of K1+...+Ki−1+Ki+1+...+Kn in M for each 1≤in.

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article


[1] Grezeszcuk, P., Puczylowski, E.R., 1984. On Goldie and dual Goldie dimension. J. Pure App. Algebra, 31:47-54.

[2] Hanna, A., Shamsuddin, A., 1984. Duality in the Category of Modules. Applications, Algebra Berichte 49, Verlag Reinhard Fischer München.

[3] Keskin, D., 2000. On lifting modules. Comm. Alg., 28:3427-3440.

[4] Lomp, C., 1996. On Dual Goldie Dimension. Diplomarbeit (M.Sc. Thesis), HHU Düsseldorf, Germany.

[5] Miyashita, Y., 1966. Quasi-projective modules, perfect modules and a theorem for modular lattices. J. Fac. Sci. Hokkaido, 19:86-110.

[6] Mohamed, S.H., Müller, B.J., 1990. Continuous and Discrete Modules. London Math. Soc. Lecture Notes Series, 147, Cambridge.

[7] Rim, S.H., Takemori, K., 1993. On dual Goldie dimension. Comm. Alg., 21:665-674.

[8] Wisbauer, R., 1991. Foundations of Module and Ring Theory. Gordon and Breach, Philadelphia.

Open peer comments: Debate/Discuss/Question/Opinion


Please provide your name, email address and a comment

Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE