Full Text:   <3192>

CLC number: O441

On-line Access: 

Received: 2005-09-05

Revision Accepted: 2005-10-10

Crosschecked: 0000-00-00

Cited: 3

Clicked: 5340

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
1. Reference List
Open peer comments

Journal of Zhejiang University SCIENCE A 2006 Vol.7 No.1 P.5-23

http://doi.org/10.1631/jzus.2006.A0005


Broad-bandwidth and low-loss metamaterials: theory, design and realization


Author(s):  Li Le-wei, Yao Hai-ying, Wu Qun, Chen Zhi-ning

Affiliation(s):  Department of Electrical and Computer Engineering, The National University of Singapore, 119260, Singapore; more

Corresponding email(s):   LWLi@nus.edu.sg

Key Words:  Metamaterials, Electric field integral equation (EFIE), Transmission line theory (TLT), Quasi-static Lorentz theory


Li Le-wei, Yao Hai-ying, Wu Qun, Chen Zhi-ning. Broad-bandwidth and low-loss metamaterials: theory, design and realization[J]. Journal of Zhejiang University Science A, 2006, 7(1): 5-23.

@article{title="Broad-bandwidth and low-loss metamaterials: theory, design and realization",
author="Li Le-wei, Yao Hai-ying, Wu Qun, Chen Zhi-ning",
journal="Journal of Zhejiang University Science A",
volume="7",
number="1",
pages="5-23",
year="2006",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.2006.A0005"
}

%0 Journal Article
%T Broad-bandwidth and low-loss metamaterials: theory, design and realization
%A Li Le-wei
%A Yao Hai-ying
%A Wu Qun
%A Chen Zhi-ning
%J Journal of Zhejiang University SCIENCE A
%V 7
%N 1
%P 5-23
%@ 1673-565X
%D 2006
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.2006.A0005

TY - JOUR
T1 - Broad-bandwidth and low-loss metamaterials: theory, design and realization
A1 - Li Le-wei
A1 - Yao Hai-ying
A1 - Wu Qun
A1 - Chen Zhi-ning
J0 - Journal of Zhejiang University Science A
VL - 7
IS - 1
SP - 5
EP - 23
%@ 1673-565X
Y1 - 2006
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.2006.A0005


Abstract: 
In this paper, we summarize some recent activities in the field of metamaterial research at the National University of Singapore (NUS). Integral equations are applied for electromagnetic modelling of supernatural materials. Some special characteristics of the metamaterials are shown. Moreover, quasi-static Lorentz theory and numerical method (i.e., the method of moments for solving the electric field integral equation) and the transmission line theory are both presented to obtain the effective constitutive relations of metamaterials, respectively. Finally, feasibility of fabricating metamaterials based on analysis of equivalent transmission line model in the microwave spectrum and even higher is also shown and correspondingly some broad-bandwidth and low-loss metamaterial structures are designed and synthesized.

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1] Caloz, C., Sanada, A., Itoh, T., 2004. A novel composite right-/left-handed coupled-line directional coupler with arbitrary coupling level and broad bandwidth. IEEE Trans. Microwave Theory Tech., 52(3):980-992.

[2] Chen, H.S., Ran, L.X., Huangfu, J.T., Zhang, X.M., Chen, K.S., Grzegorczyk, T.M., Kong, J.A., 2003. T-junction waveguide experiment to characterize left-handed properties of metamaterials. Journal of Applied Physics, 94(6):3712-3716.

[3] Collin, R.E., 1991. Field Theory of Guided Waves. IEEE Press, New York, Chapter 12.

[4] Eleftheriades, G.V., Iyer, A.K., Kremer, P.C., 2002. Planar negative refractive index media using periodically L-C loaded transmission lines. IEEE Trans. Microwave Theory and Techniques, 50(12):2702-2712.

[5] Engheta, N., 2003. Metamaterials with negative permittivity and permeability: background, salient features, and new trends. Microwave Symposium Digest, 2003 IEEE MTT-S International, 1:187-190.

[6] Falcone, F., Martin, F., Bonache, J., Marques, R., Lopetegi, T., Sorolla, M., 2004. Left-handed coplanar waveguide band pass filters based on bi-layer split ring resonators. IEEE Microwave and Wireless Components Letters, 14(1):10-12.

[7] Garg, R., Bhartia, P., Bahl, I., Ittipiboon, A., 2001. Microstrip Antenna Design Handbook. Artech House, Boston and London.

[8] Gay-Balmaz, P., Martin, O.J.F., 2001. Efficient isotropic magnetic resonators. Applied Physics Letters, 81(5):939-941.

[9] Gay-Balmaz, P., Martin, O.J.F., 2002. Electromagnetic resonances in individual and coupled split ring resonators. Journal of Applied Physics, 92(5):2929-2936.

[10] Grbic, A., Eleftheriades, G.V., 2003. Dispersion analysis of a microstrip-based negative refractive index periodic structure. IEEE Microwave and Wireless Components Letters, 13(4):155-157.

[11] Gupta, K.C., Garg, R., Bahl, I., Bhartia, P., 1996. Microstrip Lines and Slotlines. 2nd Ed., Artech House, Boston.

[12] Ishimaru, A., Lee, S.W., Kuga, Y., Jandhyala, V., 2003. Generalized constitutive relations for metamaterials based on the Quasi-static Lorentz Theory. IEEE Trans. Antennas Propagation, 51(10):2550-2557.

[13] Kong, J.A., 2002. Theorems of bianisotropic media. Proceedings of the IEEE, 60(9):1036-1046.

[14] Li, L.W., Zhang, H.X., Chen, Z.N., 2003. Representation of Constitutive Relation Tensors of Metamaterials: An Approximation for FFB Media. Proc. 2003 Progress in Electromagnetics Research (PIERS’03), Waikiki Sheraton, Hawaii, USA, p.617.

[15] Moss, C.D., Grzegorczyk, T.M., Zhang, Y., Kong, J.A., 2002. Numerical studies of left handed metamaterials. Progress in Electromagnetics Research, 35:315-334.

[16] Oliner, A.A., 2003. A planar negative-refractive-index medium without resonant elements. Microwave Symposium Digest, 2003 IEEE MTT-S International, 1:191-194.

[17] Pendry, J.B., 2000. Negative refraction makes a perfect lens. Phys. Rev. Lett., 85(18):3966-3969.

[18] Pendry, J.B., Holden, A.J., Stewart, W.J., Youngs, I., 1996. Extremely low frequency plasmons in metallic Meso structures. Phys. Rev. Lett., 76(25):4773-4776.

[19] Pendry, J.B., Holden, A.J., Robbins, D.J., Stewart, W.J., 1999. Magnetism from conductors and enhanced nonlinear phenomena. IEEE Trans. Microwave Theory Tech., 47(11):2075-2084.

[20] Sanada, A., Caloz, C., Itoh, T., 2004. Characteristics of the composite right/left-handed transmission lines. IEEE Microwave and Wireless Components Letters, 14(2):68-70.

[21] Shelby, R.A., Smith, D.R., Nemat-Nasser, S.C., Schultz, S., 2001. Microwave transmission through a two-dimensional, isotropic, left-handed metamaterial. Applied Physics Letters, 78(4):489-491.

[22] Smith, D.R., Schurig, D., 2003. Electromagnetic wave propagation in media with indefinite permittivity and permeability tensors. Physical Review Letters, 90(7):077405.

[23] Smith, D.R., Padilla, W.J., Vier, D.C., Nemat-Nasser, S.C., Schultz, S., 2000. Composite medium with simultaneously negative permeability and permittivity. Physical Review Letters, 84(18):4184-4187.

[24] Song, J.M., Chew, W.C., 1995. Moment method solutions using parametric geometry. Journal of Electromagnetic Waves and Applications, 9(1/2):71-83.

[25] Veselago, V.G., 1968. The electrodynamics of substances with simultaneously negative values of ε and µ. Soviet Physics Uspekhi, 10(4):509-514.

[26] Weiland, T., Schuhmann, R., Greegor, R.B., Parazzoli, C.G., Vetter, A.M., Smith, D.R., Vier, D.C., Schultz, S., 2001. Ab initio numerical simulation of left-handed metamaterials: comparison of calculations and experiments. Journal of Applied Physics, 90(10):5419-5424.

[27] Xu, W., Li, L.W., Wu, Q., 2004a. Design of Left-handed Materials with Broad Bandwidth and Low Loss Using Double Resonant Frequency Structure. 2004 IEEE AP-S International Symposium, Monterey, CA.

[28] Xu, W., Yao, H.Y., Li, L.W., 2004b. Analysis of a novel metamaterial using TLM. 2004 International Symposium on Antennas and Propagation, 2C3:453-456.

[29] Xu, W., Li, L.W., Yao, H.Y., Yeo, T.S., Wu, Q., 2005a. Extraction of constitutive relation tensor parameters of SRR structures using transmission line theory. Journal of Electromagnetic Waves and Applications (in press).

[30] Xu, W., Li, L.W., Yao, H.Y., Yeo, T.S., Wu, Q., 2005b. Left-handed material effects on waves modes and resonant frequencies: filled waveguide structures and substrate-loaded patch antennas. Journal of Electromagnetic Waves and Applications (in press).

[31] Yao, H.Y., Li, L.W., Wu, Q., Kong, J.A., 2004. Macroscopic Performance Analysis of Metamaterials Synthesized from Microscopic 2-D Isotropic Cross Split-Ring Resonator Array. EMW Publishing, Cambridge, Boston, 51:197-217.

[32] Yao, H.Y., Xu, W., Li, L.W., Wu, Q., Yeo, T.S., 2005. Propagation property analysis of metamaterial constructed by conductive SRRs and wires using the MGS-based algorithm. IEEE Trans. Microwave Theory Tech., 53(4):1469-1476.

[33] Ziolkowski, R.W., 2003. Design, fabrication, and testing of double negative metamaterials. IEEE Trans. Antennas Propagation, 51(7):1516-1529.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE