CLC number: TP391.72
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 0000-00-00
Cited: 1
Clicked: 5323
XU Gang, WANG Guo-zhao. Control mesh representation of a class of minimal surfaces[J]. Journal of Zhejiang University Science A, 2006, 7(9): 1544-1549.
@article{title="Control mesh representation of a class of minimal surfaces",
author="XU Gang, WANG Guo-zhao",
journal="Journal of Zhejiang University Science A",
volume="7",
number="9",
pages="1544-1549",
year="2006",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.2006.A1544"
}
%0 Journal Article
%T Control mesh representation of a class of minimal surfaces
%A XU Gang
%A WANG Guo-zhao
%J Journal of Zhejiang University SCIENCE A
%V 7
%N 9
%P 1544-1549
%@ 1673-565X
%D 2006
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.2006.A1544
TY - JOUR
T1 - Control mesh representation of a class of minimal surfaces
A1 - XU Gang
A1 - WANG Guo-zhao
J0 - Journal of Zhejiang University Science A
VL - 7
IS - 9
SP - 1544
EP - 1549
%@ 1673-565X
Y1 - 2006
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.2006.A1544
Abstract: minimal surface is extensively employed in many areas. In this paper, we propose a control mesh representation of a class of minimal surfaces, called generalized helicoid minimal surfaces, which contain the right helicoid and catenoid as special examples. We firstly construct the Bézier-like basis called AHT Bézier basis in the space spanned by {1, t, sint, cost, sinht, cosht}, t∈[0,α], α∈[0,5π/2]. Then we propose the control mesh representation of the generalized helicoid using the AHT Bézier basis. This kind of representation enables generating the minimal surfaces using the de Casteljau-like algorithm in CAD/CAGD modelling systems.
[1] Chen, Q.Y., Wang, G.Z., 2003. A class of Bézier-like curves. Computer Aided Geometric Design, 20(1):29-39.
[2] Jin, W.B., Wang, G.Z., 1999. Geometry design of a class of minimal surface with negative Gauss curvature. Chinese Journal of Computers, 22(12):1277-1279.
[3] Li, Y.J., Wang, G.Z., 2005. Two kinds of B-basis of the algebraic hyperbolic space. Journal of Zhejiang University SCIENCE, 6A(7):750-759.
[4] Man, J.J., Wang, G.Z., 2002. Polynomial minimal surface in Isothermal parameter. Chinese Journal of Computers, 25(2):197-201.
[5] Man, J.J., Wang, G.Z., 2003. Approximating to nonparameterzied minimal surface with B-spline surface. Chinese Journal of Software, 14(4):824-829.
[6] Man, J.J., Wang, G.Z., 2005. Representation and geometric construction of catenoids and helicoid. Journal of Computer-aided Design and Computer Graphics, 17(5):431-436.
[7] Monterde, J., 2004. Bézier surfaces of minimal area: the Dirichlet approach. Computer Aided Geometric Design, 21(2):117-136.
[8] Nitsche, J.C.C., 1989. Lectures on Minimal Surfaces, Vol. 1. Cambridge Univ. Press, Cambridge.
[9] Osserman, R., 1986. A Survey of Minimal Surfaces (2nd Ed.). Dover Publications, New York.
[10] Zhang, J.W., 1996. C-curves: An extension of cubic curves. Computer Aided Geometric Design, 13(3):199-217.
Open peer comments: Debate/Discuss/Question/Opinion
<1>