Full Text:   <2271>

CLC number: O24

On-line Access: 

Received: 2006-04-20

Revision Accepted: 2006-05-21

Crosschecked: 0000-00-00

Cited: 0

Clicked: 4373

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
1. Reference List
Open peer comments

Journal of Zhejiang University SCIENCE A 2006 Vol.7 No.9 P.1589-1595


Spherical parametrization of genus-zero meshes by minimizing discrete harmonic energy

Author(s):  LI Ying, YANG Zhou-wang, DENG Jian-song

Affiliation(s):  Department of Mathematics, University of Science and Technology of China, Hefei 230026, China

Corresponding email(s):   yangzw@ustc.edu.cn

Key Words:  Genus-zero meshes, Spherical parametrization, Discrete harmonic energy, Constrained optimization

LI Ying, YANG Zhou-wang, DENG Jian-song. Spherical parametrization of genus-zero meshes by minimizing discrete harmonic energy[J]. Journal of Zhejiang University Science A, 2006, 7(9): 1589-1595.

@article{title="Spherical parametrization of genus-zero meshes by minimizing discrete harmonic energy",
author="LI Ying, YANG Zhou-wang, DENG Jian-song",
journal="Journal of Zhejiang University Science A",
publisher="Zhejiang University Press & Springer",

%0 Journal Article
%T Spherical parametrization of genus-zero meshes by minimizing discrete harmonic energy
%A LI Ying
%A YANG Zhou-wang
%A DENG Jian-song
%J Journal of Zhejiang University SCIENCE A
%V 7
%N 9
%P 1589-1595
%@ 1673-565X
%D 2006
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.2006.A1589

T1 - Spherical parametrization of genus-zero meshes by minimizing discrete harmonic energy
A1 - LI Ying
A1 - YANG Zhou-wang
A1 - DENG Jian-song
J0 - Journal of Zhejiang University Science A
VL - 7
IS - 9
SP - 1589
EP - 1595
%@ 1673-565X
Y1 - 2006
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.2006.A1589

The problem of spherical parametrization is that of mapping a genus-zero mesh onto a spherical surface. For a given mesh, different parametrizations can be obtained by different methods. And for a certain application, some parametrization results might behave better than others. In this paper, we will propose a method to parametrize a genus-zero mesh so that a surface fitting algorithm with PHT-splines can generate good result. Here the parametrization results are obtained by minimizing discrete harmonic energy subject to spherical constraints. Then some applications are given to illustrate the advantages of our results. Based on PHT-splines, parametric surfaces can be constructed efficiently and adaptively to fit genus-zero meshes after their spherical parametrization has been obtained.

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article


[1] Deng, J., Chen, F., Feng, Y., 2006. Dimensions of spline spaces over T-meshes. Journal of Computational and Applied Mathematics, 194(2):267-283.

[2] Desbrun, M., Meyer, M., Alliez, P., 2002. Intrinsic parameterizations of surface meshes. Comput. Graph. Forum, 21(3):209-218.

[3] Eck, M., DeRose, T., Duchamp, T., Hoppe, H., Lounsbery, M., Stuetzle, W., 1995. Multiresolution analysis of arbitrary meshes. Computer Graphics, 29:173-182.

[4] Fletcher, R., 1987. Practial Methods of Optimization (Second Ed.). John Wiley & Sons Ltd.

[5] Floater, M.S., 1997. Parametrization and smooth approximation of surface triangulations. Computer Aided Geometric Design, 14(3):231-250.

[6] Floater, M.S., 2003. Mean value coordinates. Computer Aided Geometric Design, 20(1):19-27.

[7] Floater, M.S., Hormann, K., 2002. Parameterization of Triangulations and Unorganized Points. In: Iske, A., Quak, E., Floater, M.S. (Eds.), Tutorials on Multiresolution in Geometric Modelling. Springer-Verlag, Heidelberg, p.287-316.

[8] Floater, M.S., Hormann, K., 2005. Surface Parameterization: A Tutorial and Survey. In: Dodgson, N.A., Floater, M.S., Sabin, M.A. (Eds.), Advances in Multiresolution for Geometric Modelling. Springer-Verlag, Heidelberg, p.157-186.

[9] Gotsman, C., Gu, X., Sheffer, A., 2003. Fundamentals of spherical parameterization for 3D meshes. ACM Trans. Graph., 22(3):358-363.

[10] Gu, X., Yau, S.T., 2003. Global conformal surface parameterization. In: Kobbelt, L., Schröder, P., Hoppe, H. (Eds.), Proceedings of the 2003 Eurographics Symposium on Geometry Processing. Eurographics Association, p.127-137.

[11] Haker, S., Angenent, S., Tannenbaum, A., Kikinis, R., Sapiro, G., Halle, M., 2000. Conformal surface parameterization for texture mapping. IEEE Trans. on Visualization and Computer Graphics, 6(2):181-189.

[12] Maillot, J., Yahia, H., Verroust, A., 1993. Interactive Texture Mapping. Proceedings of the 20th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH’93, p.27-34.

[13] Praun, E., Hoppe, H., 2003. Spherical parametrization and remeshing. ACM Trans. Graph., 22(3):340-349.

[14] Sander, P.V., Snyder, J., Gortler, S.J., Hoppe, H., 2001. Texture Mapping Progressive Meshes. SIGGRAPH 2001, p.409-416.

[15] Sheffer, A., Sturler, E.D., 2000. Surface Parameterization for Meshing by Triangulation Flattening. Proceedings of the 9th International Meshing Roundtable, Sandia National Laboratories, p.161-172.

[16] Sheffer, A., Gotsman, C., Dyn, N., 2004. Robust spherical parameterization of triangular meshes. Computing, 72(1-2):185-193.

[17] Tutte, W.T., 1963. How to Draw a Graph. Proceedings of London Mathematical Society, 13:743-768.

Open peer comments: Debate/Discuss/Question/Opinion


Please provide your name, email address and a comment

Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE