Full Text:   <3318>

CLC number: O153.3

On-line Access: 

Received: 2006-09-08

Revision Accepted: 2006-12-07

Crosschecked: 0000-00-00

Cited: 2

Clicked: 4521

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
1. Reference List
Open peer comments

Journal of Zhejiang University SCIENCE A 2007 Vol.8 No.6 P.939-945


On generalized extending modules

Author(s):  ZENG Qing-yi

Affiliation(s):  Department of Mathematics, Zhejiang University, Hangzhou 310027, China; more

Corresponding email(s):   zqy67@163.com

Key Words:  Generalized extending modules, Singular, Co-H-rings

ZENG Qing-yi. On generalized extending modules[J]. Journal of Zhejiang University Science A, 2007, 8(6): 939-945.

@article{title="On generalized extending modules",
author="ZENG Qing-yi",
journal="Journal of Zhejiang University Science A",
publisher="Zhejiang University Press & Springer",

%0 Journal Article
%T On generalized extending modules
%A ZENG Qing-yi
%J Journal of Zhejiang University SCIENCE A
%V 8
%N 6
%P 939-945
%@ 1673-565X
%D 2007
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.2007.A0939

T1 - On generalized extending modules
A1 - ZENG Qing-yi
J0 - Journal of Zhejiang University Science A
VL - 8
IS - 6
SP - 939
EP - 945
%@ 1673-565X
Y1 - 2007
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.2007.A0939

A module M is called generalized extending if for any submodule N of M, there is a direct summand K of M such that NK and K/N is singular. Any extending module and any singular module are generalized extending. Any homomorphic image of a generalized extending module is generalized extending. Any direct sum of a singular (uniform) module and a semi-simple module is generalized extending. A ring R is a right Co-H-ring if and only if all right R modules are generalized extending modules.

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article


[1] Anderson, F.W., Fuller, K.R., 1974. Rings and Categories of Modules. Springer Verlag, Berlin.

[2] Chatters, A.W., Hajarnavis, C.R., 1977. Rings in which every complement right ideal is a direct summand. Quart. J. Math. Oxford, 28:61-80.

[3] Chatters, A.W., Khuri, S.M., 1980. Endomorphism rings of modules over non-singular CS rings. J. London Math. Soc., s2-21(3):434-444.

[4] Dung, N.V., Huynh, D.V., Smith, P.F., Wisbauer, R., 1994. Extending Modules. Pitman, London.

[5] Faith, C., 1976. Algebra II: Ring Theory. Springer-Verlag Berlin Heidelberg, New York.

[6] Goodearl, K.R., 1976. Ring Theory. Marcel Dekker Inc., New York and Basel.

[7] Oshiro, K., 1984. Lifting modules, extending modules and their appliciations to QF-rings. Hokkaido Math. J., 13:310-338.

[8] Zeng, Q.Y., Shi, M.H., 2006. On closed weak supplemented modules. J. Zhejiang Univ. Sci. A, 7(2):210-215.

Open peer comments: Debate/Discuss/Question/Opinion


Please provide your name, email address and a comment

Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE