CLC number: O242.23
On-line Access:
Received: 2006-09-20
Revision Accepted: 2007-01-04
Crosschecked: 0000-00-00
Cited: 4
Clicked: 4801
WANG Jin-hua, LI Chong. Kantorovich’s theorem for Newton’s method on Lie groups[J]. Journal of Zhejiang University Science A, 2007, 8(6): 978-986.
@article{title="Kantorovich’s theorem for Newton’s method on Lie groups",
author="WANG Jin-hua, LI Chong",
journal="Journal of Zhejiang University Science A",
volume="8",
number="6",
pages="978-986",
year="2007",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.2007.A0978"
}
%0 Journal Article
%T Kantorovich’s theorem for Newton’s method on Lie groups
%A WANG Jin-hua
%A LI Chong
%J Journal of Zhejiang University SCIENCE A
%V 8
%N 6
%P 978-986
%@ 1673-565X
%D 2007
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.2007.A0978
TY - JOUR
T1 - Kantorovich’s theorem for Newton’s method on Lie groups
A1 - WANG Jin-hua
A1 - LI Chong
J0 - Journal of Zhejiang University Science A
VL - 8
IS - 6
SP - 978
EP - 986
%@ 1673-565X
Y1 - 2007
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.2007.A0978
Abstract: The convergence criterion of newton’s method to find the zeros of a map f from a lie group to its corresponding Lie algebra is established under the assumption that f satisfies the classical lipschitz condition, and that the radius of convergence ball is also obtained. Furthermore, the radii of the uniqueness balls of the zeros of f are estimated. Owren and Welfert (2000) stated that if the initial point is close sufficiently to a zero of f, then newton’s method on lie group converges to the zero; while this paper provides a kantorovich’s criterion for the convergence of newton’s method, not requiring the existence of a zero as a priori.
[1] Adler, R.L., Dedieu, J.P., Margulies, J.Y., Martens, M., Shub, M., 2002. Newton’s method on Riemannian manifolds and a geometric model for the human spine. IMA J. Numer. Anal., 22(3):359-390.
[2] Dedieu, J.P., Priouret, P., Malajovich, G., 2003. Newton’s method on Riemannian manifolds: covariant alpha theory. IMA J. Numer. Anal., 23:395-419.
[3] Edelman, A., Arias, T.A., Smith, T., 1998. The geometry of algorithms with orthogonality constraints. SIAM J. Matrix Anal. Appl., 20:303-353.
[4] Ferreira, O.P., Svaiter, B.F., 2002. Kantorovich’s theorem on Newton’s method in Riemannian manifolds. J. Complexity, 18:304-329.
[5] Gabay, D., 1982. Minimizing a differentiable function over a differential manifold. J. Optim. Theory Appl., 37:177-219.
[6] Gutierrez, J.M., Hernandez, M.A., 2000. Newton’s method under weak Kantorovich conditions. IMA J. Numer. Anal., 20:521-532.
[7] Kantorovich, L.V., 1948. On Newton method for functional equations. Dokl. Acad. Nauk, 59(7):1237-1240.
[8] Kantorovich, L.V., Akilov, G.P., 1982. Functional Analysis. Pergamon, Oxford.
[9] Li, C., Wang, J.H., 2005. Convergence of Newton’s method and uniqueness of zeros of vector fields on Riemannian manifolds. Sci. in China (Ser. A), 48(11):1465-1478.
[10] Li, C., Wang, J.H., 2006. Newton’s method on Riemannian manifolds: Smale’s point estimate theory under the γ-condition. IMA J. Numer. Anal., 26(2):228-251.
[11] Mahony, R.E., 1996. The constrained Newton method on a Lie group and the symmetric eigenvalue problem. Linear Algebra Appl., 248:67-89.
[12] Owren, B., Welfert, B., 2000. The Newton iteration on Lie groups. BIT Numer. Math., 40:121-145.
[13] Smale, S., 1986. Newton’s Method Estimates from Data at One Point. In: Ewing, R., Gross, K., Martin, C. (Eds.), The Merging of Disciplines: New Directions in Pure, Applied and Computational Mathematics. Springer, New York, p.185-196.
[14] Smith, S.T., 1993. Geometric Optimization Method for Adaptive Filtering. Ph.D Thesis, Harvard University, Cambridge, MA.
[15] Smith, S.T., 1994. Optimization Techniques on Riemannian Manifolds. Fields Institute Communications. American Mathematical Society, Providence, RI, 3:113-146.
[16] Udriste, C., 1994. Convex Functions and Optimization Methods on Riemannian Manifolds. Mathematics and its Applications, Vol. 297, Kluwer Academic, Dordrecht.
[17] Varadarajan, V.S., 1984. Lie Groups, Lie Algebras and Their Representations. GTM No. 102. Springer-Verlag, New York.
[18] Wang, X.H., 1997. Convergence on the iteration of Halley family in weak conditions. Chin. Sci. Bull., 42:552-555. (in Chinese).
[19] Wang, X.H., Han, D.F., 1997. Criterion α and Newton’s method in weak condition. Chin. J. Numer. Appl. Math., 19:96-105.
[20] Wang, X.H., 1999. Convergence of Newton’s method and inverse function theorem in Banach space. Math. Comput., 68:169-186.
[21] Wang, J.H., Li, C., 2006. Uniqueness of the singular point of vector field on Riemannian manifold under the γ-condition. J. Complexity, 22:533-548.
[22] Warner, F.W., 1983. Foundations of Differentiable Manifolds and Lie Groups. GTM No. 94. Springer-Verlag, New York.
Open peer comments: Debate/Discuss/Question/Opinion
<1>