Full Text:   <3222>

CLC number: S91

On-line Access: 

Received: 2007-02-28

Revision Accepted: 2007-07-16

Crosschecked: 0000-00-00

Cited: 12

Clicked: 6393

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
1. Reference List
Open peer comments

Journal of Zhejiang University SCIENCE B 2007 Vol.8 No.9 P.686-692


In vitro assessment of gastrointestinal viability of two photosynthetic bacteria, Rhodopseudomonas palustris and Rhodobacter sphaeroides

Author(s):  ZHOU Xu-xia, PAN Yuan-jiang, WANG Yan-bo, LI Wei-fen

Affiliation(s):  Institute of Chemical Biology and Pharmaceutical Chemistry, Zhejiang University, Hangzhou 310027, China; more

Corresponding email(s):   wfli@zju.edu.cn

Key Words:  Photosynthetic bacteria, Probiotics, Primary culture, Intestinal epithelial cell, Oreochromis nilotica

ZHOU Xu-xia, PAN Yuan-jiang, WANG Yan-bo, LI Wei-fen. In vitro assessment of gastrointestinal viability of two photosynthetic bacteria, Rhodopseudomonas palustris and Rhodobacter sphaeroides[J]. Journal of Zhejiang University Science B, 2007, 8(9): 686-692.

@article{title="In vitro assessment of gastrointestinal viability of two photosynthetic bacteria, Rhodopseudomonas palustris and Rhodobacter sphaeroides",
author="ZHOU Xu-xia, PAN Yuan-jiang, WANG Yan-bo, LI Wei-fen",
journal="Journal of Zhejiang University Science B",
publisher="Zhejiang University Press & Springer",

%0 Journal Article
%T In vitro assessment of gastrointestinal viability of two photosynthetic bacteria, Rhodopseudomonas palustris and Rhodobacter sphaeroides
%A ZHOU Xu-xia
%A PAN Yuan-jiang
%A WANG Yan-bo
%A LI Wei-fen
%J Journal of Zhejiang University SCIENCE B
%V 8
%N 9
%P 686-692
%@ 1673-1581
%D 2007
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.2007.B0686

T1 - In vitro assessment of gastrointestinal viability of two photosynthetic bacteria, Rhodopseudomonas palustris and Rhodobacter sphaeroides
A1 - ZHOU Xu-xia
A1 - PAN Yuan-jiang
A1 - WANG Yan-bo
A1 - LI Wei-fen
J0 - Journal of Zhejiang University Science B
VL - 8
IS - 9
SP - 686
EP - 692
%@ 1673-1581
Y1 - 2007
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.2007.B0686

The objectives of this study were to assess the potential of two photosynthetic bacteria (PSB), Rhodopseudomonas palustris HZ0301 and Rhodobacter sphaeroides HZ0302, as probiotics in aquaculture. The viability of HZ0301 and HZ0302 in simulated gastric transit conditions (pH 2.0, pH 3.0 and pH 4.0 gastric juices) and in simulated small intestinal transit conditions (pH 8.0, with or without 0.3% bile salts) was tested. The effects of HZ0301 and HZ0302 on the viability and permeability of intestinal epithelial cell in primary culture of tilapias, Oreochromis nilotica, were also detected. All the treatments were determined with three replicates. The simulated gastric transit tolerance of HZ0301 and HZ0302 strains was pH-dependent and correspondingly showed lower viability at pH 2.0 after 180 min compared with pH 3.0 and pH 4.0. Both HZ0301 and HZ0302 were tolerant to simulated small intestine transit with or without bile salts in our research. Moreover, there was no significant difference (P>0.05) among three treatments including the control and the groups treated with HZ0301 or HZ0302 both in intestinal epithelial cell viability and membrane permeability, showing no cell damage. In summary, this study demonstrated that HZ0301 and HZ0302 had high capacity of upper gastrointestinal transit tolerance and were relatively safe for intestinal epithelial cells of tilapias.

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article


[1] Bailey, C., 1997. Aquaculture and basic human needs. World Aquac., 28(3):28-31.

[2] Bogut, I., Milakovic, Z., Bukvic, Z., Brkic, S., Zimmer, R., 1998. Influence of probiotic (Streptococcus faecium M74) on growth and content of intestinal microflora in carp (Cyprinus carpio). Czech. J. Anim. Sci., 439(5):231-235.

[3] Carnevali, O., Vivo, L., Sulpizio, R., Gioacchini, G., Olivotto, L., Silvi, S., Cresci, A., 2006. Growth improvement by probiotic in European sea bass juveniles (Dicentrarchus labrax L.), with particular attention to IGF-1, myostatin and cortisol gene expression. Aquaculture, 258(1-4):430-438.

[4] Charteris, W.P., Kelly, P.M., Morelli, L., Collins, J.K., 1998. Development and application of an in vitro methodology to determine the transit tolerance of potentially probiotic Lactobacillus and Bifidobacterium species in the upper human gastrointestinal tract. J. Appl. Microbiol., 84(5):759-768.

[5] Chou, L., Weimer, B., 1999. Isolation and characterization of acid and bile tolerant isolates from strains of Lactobacillus acidophilus. J. Dairy Sci., 82(1):23-31.

[6] Conway, P.L., Gorbach, S.L., Goldin, B.R., 1987. Survival of lactic acid bacteria in the human stomach and adhesion to intestinal cells. J. Dairy Sci., 70(1):1-12.

[7] Esiobu, N., Armenta, L., Ike, J., 2002. Antibiotic resistance in soil and water environments. Int. J. Environ. Health Res., 12(2):133-144.

[8] Fast, A.W., Menasveta, P., 2000. Some recent issues and innovations in marine shrimp pond culture. Rev. Fish. Sci., 8(3):151-233.

[9] Fuller, R., 1989. Probiotics in man and animals. J. Appl. Bacteriol., 66(5):365-378.

[10] Gatesoupe, F.J., 1999. The use of probiotics in aquaculture. Aquaculture, 180(1-2):147-165.

[11] Gilliland, S.E., Staley, T.E., Bush, L.J., 1984. Importance in bile tolerance of Lactobacillus acidophilus used as a diatery adjunct. J. Dairy Sci., 67(12):3045-3051.

[12] Gomez-Gil, B., Roque, A., Turnbull, J.F., 2000. The use and selection of probiotic bacteria for use in the culture of larval aquatic organisms. Aquaculture, 191(1-3):259-270.

[13] Guzman-Murillo, M.A., Merino-Contreras, M.L., Ascencio, F., 2000. Interaction between Aeromonas veronii and epithelial cells of spotted sand bass (Paralabrax maculatofasciatus) in culture. J. Appl. Microbiol., 88(5):897-906.

[14] Havenaar, R., Brink, N.G., Huis In’t Veld, J.H.J., 1992. Selection of Strains for Probiotics Use. In: Fuller, R. (Ed.), Probiotics, the Scientific Basis. Chapman & Hall, London, p.210-224.

[15] Holzapfel, W.H., Haberer, P., Snel, J., Schillinger, U., Huis In’t Veld, J.H.J., 1998. Overview of gut flora and probiotics. Int. J. Food Microbiol., 41(2):85-101.

[16] Huang, Y., Adams, M.C., 2004. In vitro assessment of the upper gastrointestinal tolerance of potential probiotic dairy propionibacteria. Int. J. Food Microbiol., 91(3):253-260.

[17] Hungate, R.E., 1968. A Roll Tube Method for Cultivation of Strict Anaerobes. In: Morris, J.R., Robbins, D.W. (Eds.), Methods in Microbiology, Vol. 3. Academic Press, London, p.117-132.

[18] Konjevic, G., Jurišic, V., Spuzic, I., 1997. Corrections to the original lactate dehydrogenase (LDH) release assay for the evaluation of NK cell cytotoxicity. J. Immunol. Meth., 200(1-2):199-201.

[19] Kozasa, M., 1986. Toyocerin (Bacillus toyoi) as growth promotor for animal feeding. Microbiol. Aliment. Nutr., 4(1):121-135.

[20] Planas, M., Pérez-Lorenzo, M., Hjelm, M., Gram, L., Fiksdal, I.U., Øivind, B., Pintado, J., 2006. Probiotic effect in vivo of Roseobacter strain 27-4 against Vibrio (Listonella) anguillarum infections in turbot (Scophthalmus maximus L.) larvae. Aquaculture, 255(1-4):323-333.

[21] Ramanan, P.N., Rao, M.N., 1987. Antimicrobial activity of cinnamic acid derivatives. Indian J. Exp. Biol., 25(1):42-43.

[22] Sarter, S., Nguyen, H.N.K., Hung, L.T., Lazard, J., Montet, D., 2007. Antibiotic resistance in Gram-negative bacteria isolated from farmed catfish. Food Control, 18(11):1391-1396.

[23] Sasikala, C., Ramana, C.V., 1995. Biotechnological Potentials of Anoxygenic Phototrophic Bacteria. I. Production of Single-Cell Protein, Vitamins, Ubiquinones, Hormones and Enzymes and Use in Waste Treatment. In: Laskin, A.I., Bennett, J.W., Gadd, G.M. (Eds.), Advances in Applied Microbiology. Academic Press, New York, p.173-226.

[24] Smith, P., 2006. Breakpoints for disc diffusion susceptibility testing of bacteria associated with fish diseases: a review of current practice. Aquaculture, 261(4):1113-1121.

[25] Sun, J.D., Zhao, C.Y., Huang, X.C., Chen, X.S., Xiong, K.Z., 2001. Mathematical model of photosynthetic bacteria counting. J. Shenyang Agric. Univ., 32(5):358-359 (in Chinese).

[26] Titus, E., Karasov, W.H., Ahearn, G.A., 1991. Dietary modulation of intestinal nutrient transport in the teleost fish tilapia. Am. J. Physiol., 261(6 Pt 2):R1568-R1574.

[27] van Niel, C.B., 1971. Techniques for the Enrichment, Isolation and Maintenance of the Photosynthetic Bacteria. In: San Pietro, A. (Ed.), Methods in Enzymology. Axademic Press, London, p.3-28.

[28] Vázquez, J.A., González, M.P., Murado, M.A., 2005. Effects of lactic acid bacteria cultures on pathogenic microbiota from fish. Aquaculture, 245(1/4):149-161.

[29] Wang, Y.B., Xu, Z.R., 2006. Effect of probiotics for common carp (Cyprinus carpio) based on growth performance and digestive enzyme activities. Anim. Feed Sci. Technol., 127(3-4):283-292.

[30] Wang, Y.B., Xu, Z.R., Xia, M.S., 2005. The effectiveness of commercial probiotics in northern white shrimp Penaeus vannamei ponds. Fisheries Sci., 71(5):1036-1041.

[31] Weston, D.P., 1996. Environmental Considerations in the Use of Antibacterial Drugs in Aquaculture. In: Baird, D., Beveridge, M.V.M., Kelly, L.A., Muir, J.F. (Eds.), Aquaculture and Water Resource Management. Blackwell, Oxford, p.140-165.

[32] Zarate, G., Perez-Chaia, A., Gonzalez, S., Oliver, G., 2000. Viability and β-galactosidase activity of dairy propionibacteria subjected to digestion by artificial gastric and intestinal fluids. J. Food Prot., 63(9):1214-1221.

[33] Zödl, B., Sargazi, M., Zeiner, M., Roberts, N.B., Steffan, I., Marktl, W., Ekmekcioglu, C., 2004. Toxicological effects of iron on intestinal cells. Cell Biochem. Funct., 22(3):143-147.

Open peer comments: Debate/Discuss/Question/Opinion


Please provide your name, email address and a comment

Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE