Full Text:   <2211>

CLC number: Q78; TP31

On-line Access: 

Received: 2007-09-16

Revision Accepted: 2007-10-08

Crosschecked: 0000-00-00

Cited: 1

Clicked: 5120

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
1. Reference List
Open peer comments

Journal of Zhejiang University SCIENCE B 2007 Vol.8 No.11 P.822-830


Evaluation of the effect and profitability of gene-assisted selection in pig breeding system

Author(s):  LI Ya-lan, ZHANG Qin, CHEN Yao-sheng

Affiliation(s):  College of Animal Science, South China Agricultural University, Guangzhou 510642, China; more

Corresponding email(s):   chyaosh@mail.sysu.edu.cn

Key Words:  Swine, Gene-assisted selection (GAS), Selection efficiency, Extra returns

LI Ya-lan, ZHANG Qin, CHEN Yao-sheng. Evaluation of the effect and profitability of gene-assisted selection in pig breeding system[J]. Journal of Zhejiang University Science B, 2007, 8(11): 822-830.

@article{title="Evaluation of the effect and profitability of gene-assisted selection in pig breeding system",
author="LI Ya-lan, ZHANG Qin, CHEN Yao-sheng",
journal="Journal of Zhejiang University Science B",
publisher="Zhejiang University Press & Springer",

%0 Journal Article
%T Evaluation of the effect and profitability of gene-assisted selection in pig breeding system
%A LI Ya-lan
%A CHEN Yao-sheng
%J Journal of Zhejiang University SCIENCE B
%V 8
%N 11
%P 822-830
%@ 1673-1581
%D 2007
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.2007.B0822

T1 - Evaluation of the effect and profitability of gene-assisted selection in pig breeding system
A1 - LI Ya-lan
A1 - ZHANG Qin
A1 - CHEN Yao-sheng
J0 - Journal of Zhejiang University Science B
VL - 8
IS - 11
SP - 822
EP - 830
%@ 1673-1581
Y1 - 2007
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.2007.B0822

Objective: To evaluate the effect and profitability of using the quantitative trait loci (QTL)-linked direct marker (DR marker) in gene-assisted selection (GAS). Methods: Three populations (100, 200, or 300 sows plus 10 boars within each group) with segregating QTL were simulated stochastically. Five economic traits were investigated, including number of born alive (NBA), average daily gain to 100 kg body weight (ADG), feed conversion ratio (FCR), back fat at 100 kg body weight (BF) and intramuscular fat (IMF). Selection was based on the estimated breeding value (EBV) of each trait. The starting frequencies of the QTL’s favorable allele were 0.1, 0.3 and 0.5, respectively. The economic return was calculated by gene flow method. Results: The selection efficiency was higher than 100% when DR markers were used in GAS for 5 traits. The selection efficiency for NBA was the highest, and the lowest was for ADG whose QTL had the lowest variance. The mixed model applied DR markers and obtained higher extra genetic gain and extra economic returns. We also found that the lower the frequency of the favorable allele of the QTL, the higher the extra return obtained. Conclusion: GAS is an effective selection scheme to increase the genetic gain and the economic returns in pig breeding.

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article


[1] Blattman, A.N., Kirkpatrick, B.W., Gregory, K.E., 1996. A search for quantitative trait loci for ovulation rate in cattle. Anim. Genet., 27:157-162.

[2] Brascamp, E.W., van Arendonk, J.A.M., Groen, A.F., 1993. Economic appraisal of the utilization of genetic markers in dairy cattle breeding. J. Dairy Sci., 76:1204-1213.

[3] Cao, H.Z., 2003. The Breeding Plan for High Quality Pigs. Ph.D. Thesis, China Agricultural University (in Chinese).

[4] Chakraborty, R.L., Moreau, R.L., Dekkers, J.C.M., 2002. A general method to optimize selection on multiple identified quantitative trait loci. Genet. Sel. Evol., 34(2):145-170.

[5] Dekkers, J.C.M., 2004. Commercial application of marker- and gene-assisted selection in livestock: strategies and lessons. J. Anim. Sci., 82(Suppl.):313-328.

[6] Dekkers, J.C.M., van Arendonk, J.A.M., 1998. Optimizing selection for quantitative traits with information for an identified locus in outbred population. Genet. Res. (Camb), 71(3):257-275.

[7] Dekkers, J.C.M., Chakraborty, R.L., 2001. Potential gain from optimizing multi-generation selection on an identified quantitative trait locus. J. Anim. Sci., 79:2975-2990.

[8] Dragos-Wendrich, M., Moser, G., Bartenschlager, H., Reiner, G., Geldermann, H., 2003. Linkage and QTL mapping for Sus scrofa chromosome 11. Journal of Animal Breeding and Genetics, 120(s1):89-94.

[9] Falconer, D.S., Mackay, T.F.C., 1996. Introduction to Quantitative Genetics, 4th Ed. Longman Group Limited Corporation.

[10] Georges, M., Nielsen, D., Mackinnon, M., Mishra, A., Okimoto, R., Pasquino, A., Sargeant, L., Sorensen, A., Steele, M., Zhao, X., Womack, J.E., Hoeschele, I., 1995. Mapping quantitative trait loci controlling milk production in dairy cattle by exploiting progeny testing. Genetics, 139:907-920.

[11] Gimelfarb, A., Lande, R., 1995. Marker-assisted selection and marker-QTL associations in hybrid populations. Theor. Appl. Genet., 91(3):522-528.

[12] Gomez-Raya, L., Klemetsdal, G., 1999. Two-stage strategies utilizing marker-quantitative trait locus information and individual performance. J. Anim. Sci., 77(8):2008-2018.

[13] Hayes, B., Goddard, M.E., 2003. Evaluation of marker assisted selection in pig enterprises. Livestock Production Science, 81(2-3):197-211.

[14] Heyen, D.W., Weller, J.I., Ron, M., Band, M., Beever, J.E., Feldmesser, E., Da, Y., Wiggans, G.R., Vanraden, P.M., Lewin, H.A., 1999. A genome scan for QTL influencing milk production and health traits in dairy cattle. Physiol. Genomics, 1:165-175.

[15] Hill, J.M., 1974. Prediction and evaluation of response to selection with overlapping generations. Anim. Prod., 18:117-139.

[16] Hospital, F., Moreau, L., Lacoudre, F., Charcosset, A., Gallais, A., 1997. More on the efficiency of marker assisted selection. Theor. Appl. Genet., 95(8):1181-1189.

[17] Lande, R., Thompson, R., 1990. Efficiency of marker assisted selection in the improvement of quantitative traits. Genetics, 124:743-756.

[18] Liu, H.Y., Zhang, Y., Zhang, Q., 2001. Relative efficiency of marker assisted selection when marker and QTL incompletely Linked. Chinese Science Bulletin, 46(240):2058-2063.

[19] Meuwissen, T.H.E., van Arendonk, J.A.M., 1992. Potentional improvement in rate of genetic gain from marker-assisted selection in dairy cattle breeding schemes. J. Dairy Sci., 6(75):1652-1659.

[20] Meuwissen, T.H.E., Goddard, M.E., 1996. The use of marker haplotypes in animal breeding schemes. Genet. Sel. Evol., 28(2):161-176.

[21] Ovilo, C.A., Clop, J.L., Noguera, M.A., Oliver, M.A., Barragán, C., Rodríguez, C., Silió, L., Toro, M.A., Coll, A., Folch, J.M., Sánchez, A., Babot, D., Varona, L., Pérez-Enciso, M., 2002. Quantitative trait locus mapping for meat quality traits in an Iberianx Landrace F2 pig population. J. Anim. Sci., 80:2801-2808.

[22] Ruane, J., Colleau, J., 1995. Marker assisted selection for genetic improvement of animal population when a single QTL is marked. Genet. Res. Camb., 66:71-83.

[23] Ruane, J., Colleau, J., 1996. Marker-assisted selection for a sex-limited character in a nucleus breeding population. J. Dairy Sci., 79(9):1666-1678.

[24] Sato, S., Oyamada, Y., Atsuj, K., Nade, T., Sato, S., Kobayashi, E., Mitsuhashi, T., Nirasawa, K., Komatsuda, A., Saito, Y., Terai, S., Hayashi, T., Sugimoto, Y., 2003. Quantitative trait loci analysis for growth and carcass traits in a Meishan×Duroc F2 resource population. J. Anim. Sci., 81(12):29-38.

[25] Schrooten, C., Bovenhuis, H., Coppieters, W., van Arendonk, J.A.M., 2000. Whole genome scan to detect quantitative trait loci for conformation and functional traits in dairy cattle. J. Dairy Sci., 83:795-806.

[26] Short, T.H., Rothschild, M.F., Southwood, O.I., Mclaren, D.G., de Vries, A., van der Steen, H., Eckardt, G.R., Tuggle, C.K., Helem, J., Vaske, D.A., Mileham, A.J., Plastow, G.S., 1997. Effect of the estrogen receptor locus on reproduction and production traits in four commercial pig lines. J. Anim. Sci., 75:3138-3142.

[27] Spelman, R., Garrick, D.J., 1998. Genetic and economic responses for within-family marker-assisted selection in dairy cattle breeding schemes. J. Dairy Sci., 81:2942-2950.

[28] Stearns, T.M., Beevers, J.E., Southey, B.R., Ellis, M., McKeith, F.K., Rodriguez-Zas, S.L., 2005. Evaluation of approaches to detect quantitative trait loci for growth, carcass, and meat quality on swine chromosomes 2, 6, 13, and 18. I. Univariate outbred F2 and sib-pair analyses. J. Anim. Sci., 83:1481-1493.

[29] Tang, G.Q., 2006. Study on Optimization Using QTL Information in Selection Schemes. Ph.D. Thesis, Sichuan Agricultural University (in Chinese).

[30] Villanueva, B., Pong-Wong, B.R., Woolliams, J.A., 2002. Marker assisted selection with optimized contribution of the candidates to selection. Genet. Sel. Evol., 34(6):679-703.

[31] Villanueva, B., Dekkers, J.C.M., Woolliams, J.A., Settar, P., 2004. Maximizing genetic gain over multiple generations with quantitative trait locus selection and control of inbreeding. J. Anim. Sci., 82:1305-1314.

[32] Villanueva, B., Pong-Wong, R., Fernández, J., Toro, M.A., 2005. Benefits from marker-assisted selection under an additive polygenic genetic model. J. Anim. Sci., 83:1747-1752.

[33] Whittaker, J.C., Curnow, R.N., Haley, C.S., Thompson, R., 1995. Using marker-maps in marker-assisted selection. Genet. Res. Camb., 66:255.

[34] Zhang, Y., 2000. Livestock Breeding Plan. China Agricultural University Publishing Company, Beijing, China (in Chinese).

Open peer comments: Debate/Discuss/Question/Opinion


Please provide your name, email address and a comment

Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2022 Journal of Zhejiang University-SCIENCE