CLC number: O59
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 0000-00-00
Cited: 5
Clicked: 11598
Rafael CORTELL. A numerical analysis to the non-linear fin problem[J]. Journal of Zhejiang University Science A, 2008, 9(5): 648-653.
@article{title="A numerical analysis to the non-linear fin problem",
author="Rafael CORTELL",
journal="Journal of Zhejiang University Science A",
volume="9",
number="5",
pages="648-653",
year="2008",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A0720024"
}
%0 Journal Article
%T A numerical analysis to the non-linear fin problem
%A Rafael CORTELL
%J Journal of Zhejiang University SCIENCE A
%V 9
%N 5
%P 648-653
%@ 1673-565X
%D 2008
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A0720024
TY - JOUR
T1 - A numerical analysis to the non-linear fin problem
A1 - Rafael CORTELL
J0 - Journal of Zhejiang University Science A
VL - 9
IS - 5
SP - 648
EP - 653
%@ 1673-565X
Y1 - 2008
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A0720024
Abstract: In this paper a numerical analysis is carried out to obtain the temperature distribution within a single fin. It is assumed that the heat transfer coefficient depends on the temperature. The complete highly non-linear problem is solved numerically and the variations of both, dimensionless surface temperature and dimensionless surface temperature gradient as well as heat transfer characteristics with the governing non-dimensional parameters of the problem are graphed and tabulated.
[1] Aziz, A., 1977. Perturbation solution for convective fin with internal heat generation and temperature-dependent thermal conductivity. Int. J. Heat Mass Transfer, 20(11):1253-1255.
[2] Chang, C.W., Chang, J.R., Liu, C.S., 2006. The Lie-group shooting method for boundary layer equations in fluid mechanics. J. Hydrodynamics Ser. B, 18(3):103-108.
[3] Chang, M.H., 2005. A decomposition solution for fins with temperature dependent surface heat flux. Int. J. Heat Mass Transfer, 48(9):1819-1824.
[4] Chiu, C.H., Chen, C.K., 1977. A decomposition method for solving the convective longitudinal fins with variable thermal conductivity. Int. J. Heat Mass Transfer, 45(10):2067-2075.
[5] Chowdhury, M.S.H., Hashim, I., 2007. Analytical solutions to heat transfer equations by homotopy-perturbation method revisited. Phys. Lett. A, in press.
[6] Chowdhury, M.S.H., Hashim, I., Abdulaziz, O., 2007. Comparison of homotopy-analysis method and homotopy-perturbation method for purely nonlinear fin-type problems. Communications in Nonlinear Science & Numerical Simulation, in press.
[7] Cortell, R., 1993. Application of the fourth-order Runge-Kutta method for the solution of high-order general initial value problems. Comput. & Struct., 49(5):897-900.
[8] Cortell, R., 1994. Similarity solutions for flow and heat transfer of a viscoelastic fluid over a stretching sheet. Int. J. Non-Linear Mech., 29(2):155-161.
[9] Cortell, R., 1995. Fourth Order Runge-Kutta Method in 1D for High Gradient Problems. In: Topping, B.H.V. (Ed.), Developments in Computational Engineering Mechanics. Civil-Comp. Press, New York, p.121-124.
[10] Cortell, R., 2005a. Flow and heat transfer of a fluid through a porous medium over a stretching surface with internal heat generation/absorption and suction/blowing. Fluid Dyn. Research, 37(4):231-245.
[11] Cortell, R., 2005b. Numerical solutions of the classical Blasius flat-plate problem. Appl. Math. Comp., 170(1):706-710.
[12] Cortell, R., 2006a. A note on flow and heat transfer of a viscoelastic fluid over a stretching sheet. Int. J. Non-Linear Mech., 41(1):78-85.
[13] Cortell, R., 2006b. MHD boundary-layer flow and heat transfer of a non-Newtonian power-law fluid past a moving plate with thermal radiation. Nuovo Cimento-B 121(9):951-964.
[14] Cortell, R., 2007a. Viscoelastic fluid flow and heat transfer over a stretching sheet under the effects of a non-uniform heat source, viscous dissipation and thermal radiation. Int. J. Heat Mass Transfer, 50(15-16):3152-3162.
[15] Cortell, R., 2007b. Effects of heat source/sink, radiation and work done by deformation on flow and heat transfer of a viscoelastic fluid over a stretching sheet. Comput. Math. Appl., 53(2):305-316.
[16] Domairry, G., Fazeli, M., 2007. Homotopy analysis method to determine the fin efficiency of convective straight fins with temperature dependent thermal conductivity. Communications in Nonlinear Science & Numerical Simulation, in press.
[17] Fang, T., Guo, F., Lee, C.F., 2006. A note on the extended Blasius equation. Appl. Math. Lett., 19(7):613-617.
[18] Ganji, D.D., 2006. The application of He’s homotopy perturbation method to nonlinear equations arising in heat transfer. Phys. Lett. A, 355(4-5):337-341.
[19] Ganji, D.D., Hosseini, M.J., Shayegh, J., 2007. Some nonlinear heat transfer equations solved by three approximate methods. Int. Comm. Heat Mass Transfer, 34(8):1003-1016.
[20] Hutcheon, I.C., Spalding, D.B., 1958. Prismatic fin non-linear heat loss analysed by resistance network and iterative analogue computer. British Journal of Applied Physics, 9(5):185-190.
[21] Ishak, A., Nazar, R., Pop, I., 2007a. Boundary-layer flow of a micropolar fluid on a continuously moving or fixed permeable surface. Int. J. Heat Mass Transfer, 50(23-24):4743-4748.
[22] Ishak, A., Nazar, R., Pop, I., 2007b. Boundary layer on a moving wall with suction and injection. Chin. Phys. Lett., 24(8):2274-2276.
[23] Kim, S., Huang, C.H., 2006. A series solution of the fin problem with temperature-dependent thermal conductivity. J. Phys. D: Appl. Phys., 39(22):4894-4901.
[24] Kim, S., Huang, C.H., 2007. A series solution of the non-linear fin problem with temperature-dependent thermal conductivity and heat transfer coefficient. J. Phys. D: Appl. Phys., 40(9):2979-2987.
[25] Kim, S., Moon, J.H., Huang, C.H., 2007. An approximate solution of the nonlinear fin problem with temperature-dependent thermal conductivity and heat transfer coefficient. J. Phys. D: Appl. Phys., 40(14):4382-4389.
[26] Kiwan, S., 2007. Effect of radiative losses on the heat transfer from porous fins. Int. J. Thermal Sci., 46(10):1046-1055.
[27] Lesnic, D., Hegs, P.J., 2004. A decomposition method for power-law fin-type problems. Int. Comm. Heat Mass Transfer, 31(5):673-682.
[28] Liaw, S.P., Yeh, R.H., 1994. Fins with temperature dependent surface heat flux. I. Single heat transfer mode. Int. J. Heat Mass Transfer, 37(10):1509-1515.
[29] Miansari, Mo., Ganji, D.D., Miansari, Me, 2008. Application of He’s variational iteration method to nonlinear heat transfer equations. Phys. Lett. A, 372(6):779-785.
[30] Taigbenu, A.E., Onyejekwe, O.O., 1999. Green’s function-based integral approaches to nonlinear transient boundary value problems (II). Appl. Math. Modelling, 23(3):241-253.
[31] Tari, H, Ganji, D.D., Babazadeh H., 2007. The application of He’s variational iteration method to nonlinear equations arising in heat transfer. Phys. Lett. A, 363(3):213-217.
[32] Yang, I.C., Lee, H.L., Wei, E.J., Lee, J.F., Wu, T.S., 2005. Numerical analysis of two dimensional pin fins with non-constant base heat flux. Energy Conv. Management, 46(6):881-892.
Open peer comments: Debate/Discuss/Question/Opinion
<1>
SERIR@URAER<lserir@uraer.dz>
2010-05-29 06:17:06
I need this paper for my Ph.D thesis
Lazhar SERIR@URAER<lserir@hotmail.com>
2010-05-29 06:13:00
I'm interesting about this paper for my PhD thesis