CLC number: Q631
On-line Access:
Received: 2008-02-21
Revision Accepted: 2008-07-02
Crosschecked: 2009-02-09
Cited: 0
Clicked: 6067
Ling WANG, Zhi-hua DING, Guo-hua SHI, Yu-dong ZHANG. In-vivo retinal imaging by optical coherence tomography using an RSOD-based phase modulator[J]. Journal of Zhejiang University Science A, 2009, 10(4): 607-612.
@article{title="In-vivo retinal imaging by optical coherence tomography using an RSOD-based phase modulator",
author="Ling WANG, Zhi-hua DING, Guo-hua SHI, Yu-dong ZHANG",
journal="Journal of Zhejiang University Science A",
volume="10",
number="4",
pages="607-612",
year="2009",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A0820126"
}
%0 Journal Article
%T In-vivo retinal imaging by optical coherence tomography using an RSOD-based phase modulator
%A Ling WANG
%A Zhi-hua DING
%A Guo-hua SHI
%A Yu-dong ZHANG
%J Journal of Zhejiang University SCIENCE A
%V 10
%N 4
%P 607-612
%@ 1673-565X
%D 2009
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A0820126
TY - JOUR
T1 - In-vivo retinal imaging by optical coherence tomography using an RSOD-based phase modulator
A1 - Ling WANG
A1 - Zhi-hua DING
A1 - Guo-hua SHI
A1 - Yu-dong ZHANG
J0 - Journal of Zhejiang University Science A
VL - 10
IS - 4
SP - 607
EP - 612
%@ 1673-565X
Y1 - 2009
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A0820126
Abstract: Fourier-domain rapid scanning optical delay line (RSOD) was introduced for phase modulation and depth scanning in a time-domain optical coherence tomography (TD-OCT) system. Investigation of parameter optimization of RSOD was conducted. Experiments for RSOD characterization at different parameters of the groove pitch, focal length, galvomirror size, etc. were performed. By implementing the optimized RSOD in our established TD-OCT system with a broadband light source centered at 840 nm with 50 nm bandwidth, in vivo retina imaging of a rabbit was presented, demonstrating the feasibility of high-quality TD-OCT imaging using an RSOD-based phase modulator.
[1] ANSI, 2000. American National Standards for Safe Use of Lasers. ANSI Z.136.1. American National Standards Institute, USA.
[2] de Boer, J.F., Saxer, C.E., Nelson, J.S., 2001. Stable carrier generation and phase-resolved digital data processing in optical coherence tomography. Appl. Opt., 40(31):5787-5790.
[3] Drexler, W., Fujimoto, J.G., 2008. State-of-the-art retina optical coherence tomography. Prog. Ret. Eye Res., 27(1):45-88.
[4] Drexler, W., Morgner, U., Ghanta, R.K., Kartner, F.X., Schuman, J.S., Fujimoto, J.G., 2001. Ultra high-resolution ophthalmic optical coherence tomography. Nat. Med., 7(4):502-507.
[5] Drexler, W., Sattmann, H., Hermann, B., Ko, T.H., Stur, M., Unterhuber, A., Scholda, C., Findl, O., Wirtitsch, M., Fujimoto, J.G., 2003. Enhanced visualization of macular pathology with the use of ultra high-resolution optical coherence tomography. Arch. Ophthalmol., 121(5):695-706.
[6] Hausler, G., Lindner, M.W., 1998. Coherence radar and spectral radar—new tools for dermatological diagnosis. J. Biomed. Opt., 3(1):21-31.
[7] Hitzenberger, C.K., Trost, P., Lo, P.W., Zhou, Q.Y., 2003. Three-dimensional imaging of the human retina by high-speed optical coherence tomography. Opt. Exp., 11(21):2753-2761.
[8] Hoeling, B.M., Fernandez, A.D., Haskell, R.C., Huang, E., Myers, W., Petersen, D., Ungersma, S., Wang, R., Williams, M., Fraser, S., 2000. An optical coherence microscope for 3-dimensional imaging in developmental biology. Opt. Exp., 6(7):136-146.
[9] Leitgeb, R., Hitzenberger, C.K., Fercher, A.F., 2003. Performance of Fourier domain vs. time domain optical coherence tomography. Opt. Exp., 11(8):889-894.
[10] Nassif, N.A., Cense, B., Park, B.H., Pierce, M.C., Yun, S.H., Bouma, B.E., Tearney, G.J., Chen, T.C., de Boer, J.F., 2004. In vivo high-resolution video-rate spectral-domain optical coherence tomography of the human retina and optic nerve. Opt. Exp., 12(3):367-376.
[11] Rollins, A.M., Kulkarni, M.D., Yazdanfar, S., Ung-arunyawee, R., Izatt, J.A., 1998. In vivo video rate optical coherence tomography. Opt. Exp., 3(6):219-229.
[12] Srinivasan, V.J., Huber, R., Gorczynska, I., Fujimoto, J.G., Jiang, J.Y., Reisen, P., Cable, A.E., 2007. High-speed, high-resolution optical coherence tomography retinal imaging with a frequency-swept laser at 850 nm. Opt. Lett., 32(4):361-363.
[13] Tearney, G.J., Bouma, B.E., Bopport, S.A., Golubovic, B., Swanson, E.A., Fujimoto, J.G., 1996. Rapid acquisition of in vivo biological images by use of optical coherence tomography. Opt. Lett., 21(17):1408-1410.
[14] Tearney, G.J., Bouma, B.E., Fujimoto, J.G., 1997. High-speed phase- and group-delay scanning with a grating-based phase control delay line. Opt. Lett., 22(23):1811-1813.
[15] van den Berg, T.J., Spekreijse, H., 1997. Near infrared light absorption in the human eye media. Vis. Res., 37(2):249-253.
[16] Wojtkowski, M., Srinivasan, V.J., Ko, T.H., Fujimoto, J.G., Kowalczyk, A., Duker, J.S., 2004. Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation. Opt. Exp., 12(11):2404-2422.
[17] Wollstein, G., Paunescu, L.A., Ko, T.H., Fujimoto, J.G., Kowalevicz, A., Hartl, I., Beaton, S., Ishikawa, H., Mattox, C., Singh, O., et al., 2005. Ultra high-resolution optical coherence tomography in glaucoma. Ophthalmology, 112(2):229-237.
[18] Xie, T., Wang, Z., Pan, Y., 2003. High-speed optical coherence tomography using fiberoptic acousto-optic phase modulation. Opt. Exp., 11(24):3210-3219.
[19] Zvyagin, A.V., Smith, E.D., Sampson, D., 2003. Delay and dispersion characteristics of a frequency-domain optical delay line for scanning interferometry. J. Opt. Soc. Am. A, 20(2):333-341.
Open peer comments: Debate/Discuss/Question/Opinion
<1>