Full Text:   <3711>

CLC number: TG5

On-line Access: 

Received: 2008-05-23

Revision Accepted: 2008-12-05

Crosschecked: 2009-03-04

Cited: 13

Clicked: 5757

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE A 2009 Vol.10 No.5 P.661-668

http://doi.org/10.1631/jzus.A0820392


Machining distortion prediction of aerospace monolithic components


Author(s):  Yun-bo BI, Qun-lin CHENG, Hui-yue DONG, Ying-lin KE

Affiliation(s):  State Key Lab of Fluid Power Transmission and Control, Zhejiang University, Hangzhou 310027, China; more

Corresponding email(s):   zjubyb@zju.edu.cn

Key Words:  Monolithic component, Machining distortion, Finite element simulation


Yun-bo BI, Qun-lin CHENG, Hui-yue DONG, Ying-lin KE. Machining distortion prediction of aerospace monolithic components[J]. Journal of Zhejiang University Science A, 2009, 10(5): 661-668.

@article{title="Machining distortion prediction of aerospace monolithic components",
author="Yun-bo BI, Qun-lin CHENG, Hui-yue DONG, Ying-lin KE",
journal="Journal of Zhejiang University Science A",
volume="10",
number="5",
pages="661-668",
year="2009",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A0820392"
}

%0 Journal Article
%T Machining distortion prediction of aerospace monolithic components
%A Yun-bo BI
%A Qun-lin CHENG
%A Hui-yue DONG
%A Ying-lin KE
%J Journal of Zhejiang University SCIENCE A
%V 10
%N 5
%P 661-668
%@ 1673-565X
%D 2009
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A0820392

TY - JOUR
T1 - Machining distortion prediction of aerospace monolithic components
A1 - Yun-bo BI
A1 - Qun-lin CHENG
A1 - Hui-yue DONG
A1 - Ying-lin KE
J0 - Journal of Zhejiang University Science A
VL - 10
IS - 5
SP - 661
EP - 668
%@ 1673-565X
Y1 - 2009
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A0820392


Abstract: 
To predict the distortion of aerospace monolithic components, a model is established to simulate the numerical control (NC) milling process using 3D finite element method (FEM). In this model, the cutting layer is simplified firstly. Then, the models of cutting force and cutting temperature are established to gain the cutting loads, which are applied to the mesh model of the part. Finally, a prototype of machining simulation environment is developed to simulate the milling process of a spar. Key factors influencing the distortion, such as initial residual stress, cutting loads, fixture layout, cutting sequence, and tool path are considered all together. The total distortion of the spar is predicted and an experiment is conducted to validate the numerical results. It is found that the maximum discrepancy between the simulation results and experiment values is 19.0%.

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1] Altintas, Y., 2000. Manufacturing Automation. Cambridge University Press, Cambridge, England, p.4-13.

[2] Åström, P., 2004. Simulation of Manufacturing Processes in Product Development. PhD Thesis, Luleå University of Technology, Sweden.

[3] Bi, Y.B., 2007. Physics-based Milling Process Simulation and Applications in Machining Distortion Prediction of Aeronautical Monolithic Components. PhD Thesis, Zhejiang University, Hangzhou, China (in Chinese).

[4] Cheng, Q.L., Ke, Y.L., Dong, H.Y., 2006. Numerical simulation study on milling force for aerospace aluminum alloy. Acta Aeronautica et Astronautica Sinica, 27(4):724-727 (in Chinese).

[5] Dong, H.Y., Ke, Y.L., Wu, Q., Xu, D., 2003. Finite element model for optimal clamping scheme of frame shape workpiece based on residual stress distribution. Acta Aeronautica et Astronautica Sinica, 24(4):382-384 (in Chinese).

[6] Guo, H., Zuo, D.W., Wang, S.H., Xu, L.L., Wang, M., 2005. Effect of tool-path on milling accuracy under clamping. Transactions of Nanjing University of Aeronautics & Astronautics, 22(3):234-239.

[7] Liu, S.G., Zheng, L., Zhang, Z.H., Wen, D.H., 2006. Optimal fixture design in peripheral milling of thin-walled workpiece. International Journal of Advanced Manufacturing Technology, 28(7-8):653-658.

[8] Loewen, E.G., Shaw, M.C., 1954. On the analysis of cutting tool temperatures. ASME Journal of Engineering for Industry, 76:217-231.

[9] Mei, Z.Y., Wang, Y.Q., Fan, Y.Q., 2005. Researching and simulating deformation of aerocraft structure part in NC machining. Acta Aeronautica et Astronautica Sinica, 26(2):234-239 (in Chinese).

[10] Oxley, P.L.B., 1989. Mechanics of Machining, an Analytical Approach to Assessing Machinability. Ellis Horwood Limited, West Sussex, England.

[11] Ratchev, S., Govender, E., Nikov, S., Phuah, K., Tsiklos, G., 2003. Force and deflection modelling in milling of low-rigidity complex parts. Journal of Materials Processing Technology, 143-144(12):796-801.

[12] Shaw, M.C., 1984. Metal Cutting Principles. Clarendon Press, Oxford, England.

[13] Tsai, J.S., Liao, C.L., 1999. Finite-element modeling of static surface errors in the peripheral milling of thin-walled workpieces. Journal of Materials Processing Technology, 94(2-3):235-246.

[14] Wan, M., Zhang, W.H., Qiu, K.P., Gao, T., Yang, Y.H., 2005. Numerical prediction of static form errors in peripheral milling of thin-walled workpieces with irregular meshes. Journal of Manufacturing Science and Engineering, 127(1):13-22.

[15] Wang, S.P., Padmanaban, S., 2004. A New Approach for FEM Simulation of NC Machining Processes. Proceedings of the 8th International Conference on Numerical Methods in Industrial Forming Processes, Columbus, Ohio, p.1371-1376.

[16] Wang, Z.J., Chen, W.Y., Zhang, Y.D., 2005. Study on the machining distortion of thin-walled part caused by redistribution of residual stress. Chinese Journal of Aeronautics, 18(2):175-179 (in Chinese).

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE