CLC number: TB383
On-line Access: 2010-10-05
Received: 2010-04-16
Revision Accepted: 2010-07-22
Crosschecked: 2010-09-16
Cited: 1
Clicked: 5778
Ming-du Ma, Jefferson Zhe Liu, Li-feng Wang, Lu-ming Shen, Quan-shui Zheng. Effects of vacancies on interwall spacings of multi-walled carbon nanotubes[J]. Journal of Zhejiang University Science A, 2010, 11(10): 714-721.
@article{title="Effects of vacancies on interwall spacings of multi-walled carbon nanotubes",
author="Ming-du Ma, Jefferson Zhe Liu, Li-feng Wang, Lu-ming Shen, Quan-shui Zheng",
journal="Journal of Zhejiang University Science A",
volume="11",
number="10",
pages="714-721",
year="2010",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A1000174"
}
%0 Journal Article
%T Effects of vacancies on interwall spacings of multi-walled carbon nanotubes
%A Ming-du Ma
%A Jefferson Zhe Liu
%A Li-feng Wang
%A Lu-ming Shen
%A Quan-shui Zheng
%J Journal of Zhejiang University SCIENCE A
%V 11
%N 10
%P 714-721
%@ 1673-565X
%D 2010
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A1000174
TY - JOUR
T1 - Effects of vacancies on interwall spacings of multi-walled carbon nanotubes
A1 - Ming-du Ma
A1 - Jefferson Zhe Liu
A1 - Li-feng Wang
A1 - Lu-ming Shen
A1 - Quan-shui Zheng
J0 - Journal of Zhejiang University Science A
VL - 11
IS - 10
SP - 714
EP - 721
%@ 1673-565X
Y1 - 2010
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A1000174
Abstract: We use molecular dynamics (MD) simulations to study the effects of vacancies on tube diameters and interwall spacings of multi-walled carbon nanotubes (MWCNTs). Two types of vacancies, double vacancy and three dangling-bond (3DB) single vacancy, are identified to have opposite effects on the tube size change, which explains the inconsistency of the experimentally measured interwall spacings of MWCNTs after electron beam irradiation. A theoretical model to quantitatively predict the shrunk structures of the irradiated MWCNTs is further developed. We also discuss the fabrications of prestressed MWCNTs, in which reduced interwall spacings are desired to enhance the overall elastic modulus and strength.
[1]Ajayan, P.M., Ravikumar, V., Charlier, J.C., 1998. Surface reconstructions and dimensional changes in single-walled carbon nanotubes. Physical Review Letters, 81(7):1437-1440.
[2]Banhart, F., 1999. Irradiation effects in carbon nanostructures. Reports on Progress in Physics, 62(8):1181-1221.
[3]Banhart, F., Ajayan, P.M., 1996. Carbon onions as nanoscopic pressure cells for diamond formation. Nature, 382(6590):433-435.
[4]Banhart, F., Li, J.X., Krasheninnikov, A.V., 2005. Carbon nanotubes under electron irradiation: Stability of the tubes and their action as pipes for atom transport. Physical Review B, 71(24):241408.
[5]Cumings, J., Zettl, A., 2000. Low-friction nanoscale linear bearing realized from multiwall carbon nanotubes. Science, 289(5479):602-604.
[6]Ding, W., Calabri, L., Kohlhaas, K.M., Chen, X., Dikin, D.A., Ruoff, R.S., 2007. Modulus, fracture strength, and brittle vs. plastic response of the outer shell of arc-grown multi-walled carbon nanotubes. Experimental Mechanics, 47(1):25-36.
[7]Hashimoto, A., Suenaga, K., Gloter, A., Urita, K., Iijima, S., 2004. Direct evidence for atomic defects in graphene layers. Nature, 430(7002):870-873.
[8]Jung, S.I., Jo, S.H., Moon, H.S., Kim, J.M., Zang, D.S., Lee, C.J., 2007. Improved crystallinity of double-walled carbon nanotubes after a high-temperature thermal annealing and their enhanced field emission properties. Journal of Physical Chemistry C, 111(11):4175-4179.
[9]Krasheninnikov, A.V., Banhart, F., 2007. Engineering of nanostructured carbon materials with electron or ion beams. Nature Materials, 6(10):723-733.
[10]Krasheninnikov, A.V., Lehtinen, P.O., Foster, A.S., Nieminen, R.M., 2006. Bending the rules: contrasting vacancy energetics and migration in graphite and carbon nanotubes. Chemical Physics Letters, 418(1-3):132-136.
[11]Krasheninnikov, A.V., Miyamoto, Y., Tomanek, D., 2007. Role of electronic excitations in ion collisions with carbon nanostructures. Physical Review Letters, 99(1):016104.
[12]Lee, C., Wei, X.D., Kysar, J.W., Hone, J., 2008. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science, 321(5887):385-388.
[13]Lu, A.J., Pan, B.C., 2004. Nature of single vacancy in achiral carbon nanotubes. Physical Review Letters, 92(10):105504.
[14]Mielke, S.L., Belytschko, T., Schatz, G.C., 2007. Nanoscale fracture mechanics. Annual Review of Physical Chemistry, 58(1):185-209.
[15]Peng, B., Locascio, M., Zapol, P., Li, S.Y., Mielke, S.L., Schatz, G.C., Espinosa, H.D., 2008. Measurements of near-ultimate strength for multiwalled carbon nanotubes and irradiation-induced crosslinking improvements. Nature Nanotechnology, 3(10):626-631.
[16]Plimpton, S., 1995. Fast parallel algorithms for short-range molecular-dynamics. Journal of Computational Physics, 117(1):1-19.
[17]Stuart, S.J., Tutein, A.B., Harrison, J.A., 2000. A reactive potential for hydrocarbons with intermolecular interactions. Journal of Chemical Physics, 112(14):6472-6486.
[18]Sun, L., Banhart, F., Krasheninnikov, A.V., Rodriguez-Manzo, J.A., Terrones, M., Ajayan, P.M., 2006. Carbon nanotubes as high-pressure cylinders and nanoextruders. Science, 312(5777):1199-1202.
[19]Sun, L.T., Krasheninnikov, A.V., Ahlgren, T., Nordlund, K., Banhart, F., 2008. Plastic deformation of single nanometer-sized crystals. Physical Review Letters, 101(15):156101.
[20]Wang, C., Wang, C.Y., 2006. Geometry and electronic properties of single vacancies in achiral carbon nanotubes. European Physical Journal B, 54(2):243-247.
[21]Xu, Z.P., Wang, L.F., Zheng, Q.S., 2008. Enhanced mechanical properties of prestressed multi-walled carbon nanotubes. Small, 4(6):733-737.
[22]Yu, M.F., Yakobson, B.I., Ruoff, R.S., 2000a. Controlled sliding and pullout of nested shells in individual multiwalled carbon nanotubes. Journal of Physical Chemistry B, 104(37):8764-8767.
[23]Yu, M.F., Lourie, O., Dyer, M.J., Moloni, K., Kelly, T.F., Ruoff, R.S., 2000b. Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Science, 287(5453):637-640.
[24]Zaiser, M., 1999. Self-compression and diamond nucleation in irradiated carbon onions: a theoretical model. Materials Research Society Symposium Proceedings, 540:243-248.
[25]Zobelli, A., Gloter, A., Ewels, C.P., Seifert, G., Colliex, C., 2007. Electron knock-on cross section of carbon and boron nitride nanotubes. Physical Review B, 75(24):245402.
Open peer comments: Debate/Discuss/Question/Opinion
<1>