Full Text:   <3027>

Summary:  <2212>

CLC number: TU4

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 2013-10-16

Cited: 5

Clicked: 6963

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE A 2013 Vol.14 No.11 P.767-777

http://doi.org/10.1631/jzus.A1300156


Influence of natural deposition plane orientation on oedometric consolidation behavior of three typical clays from southeast coast of China*


Author(s):  Qi-yin Zhu1,2, Yin-fu Jin1,2, Zhen-yu Yin1,2, Pierre-Yves Hicher2

Affiliation(s):  1. Department of Civil Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; more

Corresponding email(s):   qiyin.zhu@gmail.com

Key Words:  Clay, Compressibility, Consolidation, Creep, Permeability, Natural deposition


Share this article to: More |Next Article >>>

Qi-yin Zhu, Yin-fu Jin, Zhen-yu Yin, Pierre-Yves Hicher. Influence of natural deposition plane orientation on oedometric consolidation behavior of three typical clays from southeast coast of China[J]. Journal of Zhejiang University Science A, 2013, 14(11): 767-777.

@article{title="Influence of natural deposition plane orientation on oedometric consolidation behavior of three typical clays from southeast coast of China",
author="Qi-yin Zhu, Yin-fu Jin, Zhen-yu Yin, Pierre-Yves Hicher",
journal="Journal of Zhejiang University Science A",
volume="14",
number="11",
pages="767-777",
year="2013",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A1300156"
}

%0 Journal Article
%T Influence of natural deposition plane orientation on oedometric consolidation behavior of three typical clays from southeast coast of China
%A Qi-yin Zhu
%A Yin-fu Jin
%A Zhen-yu Yin
%A Pierre-Yves Hicher
%J Journal of Zhejiang University SCIENCE A
%V 14
%N 11
%P 767-777
%@ 1673-565X
%D 2013
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A1300156

TY - JOUR
T1 - Influence of natural deposition plane orientation on oedometric consolidation behavior of three typical clays from southeast coast of China
A1 - Qi-yin Zhu
A1 - Yin-fu Jin
A1 - Zhen-yu Yin
A1 - Pierre-Yves Hicher
J0 - Journal of Zhejiang University Science A
VL - 14
IS - 11
SP - 767
EP - 777
%@ 1673-565X
Y1 - 2013
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A1300156


Abstract: 
The parameters obtained from oedometric consolidation tests are commonly used in the development of constitutive modeling and for engineering practice. This paper focuses on the influence of the natural deposition plane orientation on oedometric consolidation behavior of three natural clays from the southeast coast of China. Oedometer tests were conducted on intact specimens prepared by sampling at a series of angles relative to the natural deposition plane. For each specimen, yield stress, compressibility indexes, secondary compression, and permeability coefficients were determined. The influence of the sampling angle on these properties was investigated, revealing that yield stress, compression index, swelling index, creep index, ratio of secondary compression coefficient to compression index (C αe/C c) and permeability coefficient were all dependent to some extent on the sampling angle. These findings indicate the role of the anisotropy due to the natural deposition on the oedometric consolidation behavior.

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

References

[1] Berry, P.L., Poskitt, T.J., 1972. The consolidation of peat. Gotechnique, 22(1):27-52. 


[2] Chen, Y.M., Tang, X.W., Jia, N., 2007. Consolidation of sensitive clay with vertical drain. International Journal for Numerical and Analytical Methods in Geomechanics, 31(15):1695-1713. 


[3] Casagrande, A., 1936. The Determination of the Pre-consolidation Load and Its Practical Significance. , Proceedings of 1st International Conference Soil Mechanics and Foundation Engineering, 60-64. :60-64. 

[4] Chinese Industry Standard, 1999. SL237-1999, Specification of Soil Test, The Ministry of Water Resources of the Peoples Republic of China,:

[5] Clayton, C.R., Simons, N.E., Matthews, M.C., 1982.  Site Investigation. Blackwell Science,Oxford :

[6] Duan, Y.Y., Zhang, Y.P., Chan, D., Yu, Y.N., 2012. Theoretical elastoplastic analysis for foundations with geosyntheticencased columns. Journal of Zhejiang Universit-SCIENCE A (Applied Physics & Engineering), 13(7):506-518. 


[7] Feng, T.W., 2010. Some observations on the oedometric consolidation strain rate behaviors of saturated clay. Journal of Geoengineering, 5(1):1-7. 

[8] Huang, M.S., Liu, Y.H., 2011. Simulation of yield characteristics and principal stress rotation effects of natural soft clay. Chinese Journal of Geotechnical Engineering, (in Chinese),33(11):1167-1175. 

[9] Karstunen, M., Yin, Z.Y., 2010. Modelling time-dependent behaviour of Murro test embankment. Gotechnique, 60(10):735-749. 


[10] Lade, P.V., Kirkgard, M.M., 2000. Effects of stress rotation and changes of b-values on cross-anisotropic behaviour of natural, K 0-consolidated soft clay. Soils and Foundations, 40(6):93-105. 


[11] Leoni, M., Karstunen, M., Vermeer, P.A., 2008. Anisotropic creep model for soft soils. Gotechnique, 58(3):215-226. 


[12] Li, J.Z., Peng, F.L., Xu, L.S., 2009. One-dimensional viscous behavior of clay and its constitutive modeling. International Journal of Geomechanics, 9(2):43-51. 


[13] Li, Q., Ng, C.W.W., Liu, G.B., 2012. Low secondary compressibility and shear strength of Shanghai Clay. Journal of Central South University, 19(8):2323-2332. 


[14] Li, Y.Q., Zhou, J., Xie, K.H., 2008. Environmental effects induced by excavation. Journal of Zhejiang Universit-SCIENCE A, 9(1):50-57. 


[15] Mesri, G., Godlewski, P.M., 1977. Time and stress-compressibility interrelationship. Journal of the Geotechnical Engineering Division, 103(5):417-430. 

[16] Mesri, G., Castro, A., 1987.  C α/C c concept and K 0 during secondary compression. Journal of Geotechnical Engineering, 113(3):230-247. 


[17] Miao, L., Zhang, J., Wang, F., Houston, S.L., 2008. Time-dependent deformation behavior of Jiangsu marine clay. Marine Georesources & Geotechnology, 26(2):86-100. 


[18] OKelly, B.C., 2006. Compression and consolidation anisotropy of some soft soils. Geotechnical and Geological Engineering, 24(6):1715-1728. 


[19] Shen, Y., Zhou, J., Gong, X.N., 2008.  Study on Strength Criterion of Intact Soft Clay after Monotonic Principal Stress Rotation. Geotechnical Engineering for Disaster Mitigation and Rehabilitation. Springer Berlin Heidelberg,Berlin :892-898. 


[20] Suneel, M., Park, L.K., Im, J.C., 2008. Compressibility characteristics of Korean marine clay. Marine Georesources & Geotechnology, 26(2):111-127. 


[21] Wang, L.Z., Yin, Z.Y., 2012. Stress-dilatancy of natural soft clay under undrained creep condition. International Journal of Geomechanics, in press,:


[22] Wang, L.Z., Shen, K.L., Ye, S.H., 2008. Undrained shear strength of K 0 consolidated soft soils. International Journal of Geomechanics, 8(2):105-113. 


[23] Wang, L.Z., Wang, Z., Li, L.L., Wang, J.C., 2011. Construction behavior simulation of a hydraulic tunnel during standpipe lifting. Tunnelling and Underground Space Technology, 26(6):674-685. 


[24] Wang, L.Z., Dan, H.B., Li, L.L., 2012. Modeling strain-rate dependent behavior of KR 0-consolidated soft clays. Journal of Engineering Mechanics, 138(7):738-748. 


[25] Yin, Z.Y., Hicher, P.Y., 2008. Identifying parameters controlling soil delayed behaviour from laboratory and in situ pressuremeter testing. International Journal for Numerical and Analytical Methods in Geomechanics, 32(12):1515-1535. 


[26] Yin, Z.Y., Chang, C.S., 2009. Microstructural modelling of stress-dependent behaviour of clay. International Journal of Solids and Structures, 46(6):1373-1388. 


[27] Yin, Z.Y., Chang, C.S., 2009. Non-uniqueness of critical state line in compression and extension conditions. International Journal for Numerical and Analytical Methods in Geomechanics, 33(10):1315-1338. 


[28] Yin, Z.Y., Chang, C.S., Hicher, P.Y., Karstunen, M., 2009. Micromechanical analysis of kinematic hardening in natural clay. International Journal of Plasticity, 25(8):1413-1435. 


[29] Yin, Z.Y., Chang, C.S., Karstunen, M., Hicher, P.Y., 2010. An anisotropic elastic-viscoplastic model for soft clays. International Journal of Solids and Structures, 47(5):665-677. 


[30] Yin, Z.Y., Hattab, M., Hicher, P.Y., 2011. Multiscale modeling of a sensitive marine clay. International Journal for Numerical and Analytical Methods in Geomechanics, 35(15):1682-1702. 


[31] Yin, Z.Y., Xu, Q., Yu, C., 2013. Elastic viscoplastic modeling for natural soft clays considering nonlinear creep. International Journal of Geomechanics, in press,:


[32] Zeng, L.L., Hong, Z.S., Cai, Y.Q., Han, J., 2011. Change of hydraulic conductivity during compression of undisturbed and remolded clays. Applied Clay Science, 51(1-2):86-93. 


[33] Zhang, Z.M., 2011. Achievements and problems of geotechnical engineering investigation in China. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 12(2):87-102. 



Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE