Full Text:   <3113>

CLC number: TU279.72

On-line Access: 2013-12-03

Received: 2013-05-26

Revision Accepted: 2013-09-21

Crosschecked: 2013-11-07

Cited: 5

Clicked: 7201

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE A 2013 Vol.14 No.12 P.856-866

http://doi.org/10.1631/jzus.A1300185


A modified constitutive model for FRP confined concrete in circular sections and its implementation with OpenSees programming*


Author(s):  Hui Liu1, Ming-hua He1, Yu-qi Luan1, Jia Guo2, Lu-lu Liu3

Affiliation(s):  1. Department of Civil Engineering, Tsinghua University, Beijing 100084, China; more

Corresponding email(s):   heminghua@tsinghua.edu.cn

Key Words:  FRP confined concrete, Constitutive model, OpenSees, User material, Secondary development


Hui Liu, Ming-hua He, Yu-qi Luan, Jia Guo, Lu-lu Liu. A modified constitutive model for FRP confined concrete in circular sections and its implementation with OpenSees programming[J]. Journal of Zhejiang University Science A, 2013, 14(12): 856-866.

@article{title="A modified constitutive model for FRP confined concrete in circular sections and its implementation with OpenSees programming",
author="Hui Liu, Ming-hua He, Yu-qi Luan, Jia Guo, Lu-lu Liu",
journal="Journal of Zhejiang University Science A",
volume="14",
number="12",
pages="856-866",
year="2013",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A1300185"
}

%0 Journal Article
%T A modified constitutive model for FRP confined concrete in circular sections and its implementation with OpenSees programming
%A Hui Liu
%A Ming-hua He
%A Yu-qi Luan
%A Jia Guo
%A Lu-lu Liu
%J Journal of Zhejiang University SCIENCE A
%V 14
%N 12
%P 856-866
%@ 1673-565X
%D 2013
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A1300185

TY - JOUR
T1 - A modified constitutive model for FRP confined concrete in circular sections and its implementation with OpenSees programming
A1 - Hui Liu
A1 - Ming-hua He
A1 - Yu-qi Luan
A1 - Jia Guo
A1 - Lu-lu Liu
J0 - Journal of Zhejiang University Science A
VL - 14
IS - 12
SP - 856
EP - 866
%@ 1673-565X
Y1 - 2013
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A1300185


Abstract: 
openSees is a well-recognized open source platform with high compatibility, and it has a well-developed fiber element method to cope with nonlinear structural analysis. Fiber reinforced polymer (FRP) confined concrete can effectively improve the seismic performance of concrete structures. However, sophisticated constitutive models for FRP confined concrete are not available in the current version of openSees. In this paper, after reviewing several typical FRP confined concrete constitutive models, a modified constitutive model for FRP confined concrete in circular sections was proposed based on Lam and Teng (2003)’s model with four main modifications including the determination of FRP rupture strain, ultimate condition, envelope shape, and hysteretic rules. To embed the proposed constitutive model into openSees is a practical solution for engineering simulation. Hence, the secondary development of openSees New UserMat was briefly demonstrated and a set of critical steps were depicted in a flow chart. Finally, with the numerical implementations of a series of FRP confined concrete members covering a wide range of load cases, FRP confinement types and geometric properties, the utility and accuracy of the proposed model compared with Lam and Teng (2003)’s model and new material secondary development in openSees were well validated.

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

References

[1] BS 8110, 1997.  Structural Use of Concrete, Part 1, Code of Practice for Design and Construction. British Standards Institution,London, UK :

[2] He, M.H., Luan, Y.Q., Liu, H., Wang, Z.X., 2013. Development of FRP confined concrete constitutive models and analysis of pier/column behavior based on OpenSees. Bridge Construction, (in Chinese),43(6):22-30. 

[3] Hognestad, E., 1951. A Study of Combined Bending and Axial Load in Reinforced Concrete Members.  Bulletin Series No. 399. University of Illinois at Urbana Champaign, College of Engineering,Engineering Experiment Station, Urbana :

[4] Karsan, I.D., Jirsa, J.O., 1969. Behavior of concrete under compressive loadings. Journal of the Structural Division, 95(12):2543-2563. 

[5] Lam, L., Teng, J.G., 2003. Design-oriented stress-strain model for FRP-confined concrete. Construction and Building Materials, 17(6-7):471-489. 


[6] Lam, L., Teng, J.G., 2009. Stress-strain model for FRP-confined concrete under cyclic axial compression. Engineering Structures, 31(2):308-321. 


[7] Lim, J.C., Ozbakkaloglu, T., 2013. Confinement model for FRP-confined high-strength concrete. Journal of Composites for Construction, in press,:


[8] Mander, J.B., Priestley, M.J.N., Park, R., 1988. Observed stress-strain behavior of confined concrete. Journal of Structural Engineering, 114(8):1827-1849. 


[9] Mander, J.B., Priestley, M.J.N., Park, R., 1988. Theoretical stress-strain model for confined concrete. Journal of Structural Engineering, 114(8):1804-1826. 


[10] Miyauchi, K., Inoue, S., Kuroda, T., Kobayashi, A., 1999. Strengthening effects of concrete columns with carbon fiber sheet. Transactions of the Japan Concrete Institute, 21:143-150. 

[11] Monti, G., Spacone, E., 2000. Reinforced concrete fiber beam element with bond-slip. Journal of Structural Engineering, 126(6):654-661. 


[12] Ozbakkaloglu, T., Saatcioglu, M., 2006. Seismic behavior of high-strength concrete columns confined by fiber reinforced polymer tubes. Journal of Composites for Construction, 10(6):538-549. 


[13] Ozbakkaloglu, T., Akin, E., 2012. Behavior of FRP-confined normal- and high-strength concrete under cyclic axial compression. Journal of Composites for Construction, 16(4):451-463. 


[14] Ozbakkaloglu, T., Lim, J.C., Vincent, T., 2013. FRP-confined concrete in circular sections: Review and assessment of stress-strain models. Engineering Structures, 49:1068-1088. 


[15] Park, R., Negel Priestley, M.J., Gill, W.D., 1982. Ductility of square-confined concrete columns. Journal of the Structural Division, 108(4):929-950. 

[16] Samaan, M., Mirmiran, A., Shahawy, M., 1998. Model of concrete confined by fiber composites. Journal of Structural Engineering, 124(9):1025-1031. 


[17] Shams, M., Saadeghvaziri, M.A., 1997. State of the art of concrete-filled steel tubular columns. ACI Structural Journal, 94(5):558-571. 

[18] Shan, B., Xiao, Y., Guo, Y.R., 2006. Residual performance of FRP-retrofitted RC columns after being subjected to cyclic loading damage. Journal of Composite for Construction, 10(4):304-312. 


[19] Spacone, E., Filippou, F.C., Taucer, F.F., 1996. Fiber beam-column model for non-linear analysis of R/C frames: Part I. Formulation. Journal of Earthquake Engineering and Structural Dynamics, 25(7):711-725. 


[20] Toutanji, H., 1999. Stress-strain characteristics of concrete columns externally confined with advanced fiber composite sheets. ACI Materials Journal, 96(3):397-404. 

[21] Wang, Y.F., Wu, H.L., 2011. Size effect of concrete short columns confined with aramid FRP jackets. Journal of Composites for Construction, 15(4):535-544. 


[22] Xiao, Y., Wu, H., 2000. Compressive behavior of concrete confined by carbon fiber composite jackets. Journal of Materials in Civil Engineering, 12(2):139-146. 



Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2022 Journal of Zhejiang University-SCIENCE